
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/298427119

Bayesian analysis of rare events

Article  in  Journal of Computational Physics · March 2016

DOI: 10.1016/j.jcp.2016.03.018

CITATIONS

29
READS

1,483

3 authors:

Some of the authors of this publication are also working on these related projects:

Reliability of hydraulic structures considering spatial variability View project

SAFEPEC - Innovative, risk-based inspection for a smarter and safer waterborne industry View project

Daniel Straub

Technische Universität München

214 PUBLICATIONS   2,759 CITATIONS   

SEE PROFILE

Iason Papaioannou

Technische Universität München

71 PUBLICATIONS   674 CITATIONS   

SEE PROFILE

Wolfgang Betz

Technische Universität München

20 PUBLICATIONS   290 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Daniel Straub on 25 December 2017.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/298427119_Bayesian_analysis_of_rare_events?enrichId=rgreq-4f03d8941c5bc892539aea183447d4da-XXX&enrichSource=Y292ZXJQYWdlOzI5ODQyNzExOTtBUzo1NzU0MzI2NDkzMTQzMDRAMTUxNDIwNTI0MjgyNw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/298427119_Bayesian_analysis_of_rare_events?enrichId=rgreq-4f03d8941c5bc892539aea183447d4da-XXX&enrichSource=Y292ZXJQYWdlOzI5ODQyNzExOTtBUzo1NzU0MzI2NDkzMTQzMDRAMTUxNDIwNTI0MjgyNw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Reliability-of-hydraulic-structures-considering-spatial-variability?enrichId=rgreq-4f03d8941c5bc892539aea183447d4da-XXX&enrichSource=Y292ZXJQYWdlOzI5ODQyNzExOTtBUzo1NzU0MzI2NDkzMTQzMDRAMTUxNDIwNTI0MjgyNw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/SAFEPEC-Innovative-risk-based-inspection-for-a-smarter-and-safer-waterborne-industry?enrichId=rgreq-4f03d8941c5bc892539aea183447d4da-XXX&enrichSource=Y292ZXJQYWdlOzI5ODQyNzExOTtBUzo1NzU0MzI2NDkzMTQzMDRAMTUxNDIwNTI0MjgyNw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-4f03d8941c5bc892539aea183447d4da-XXX&enrichSource=Y292ZXJQYWdlOzI5ODQyNzExOTtBUzo1NzU0MzI2NDkzMTQzMDRAMTUxNDIwNTI0MjgyNw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel_Straub?enrichId=rgreq-4f03d8941c5bc892539aea183447d4da-XXX&enrichSource=Y292ZXJQYWdlOzI5ODQyNzExOTtBUzo1NzU0MzI2NDkzMTQzMDRAMTUxNDIwNTI0MjgyNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel_Straub?enrichId=rgreq-4f03d8941c5bc892539aea183447d4da-XXX&enrichSource=Y292ZXJQYWdlOzI5ODQyNzExOTtBUzo1NzU0MzI2NDkzMTQzMDRAMTUxNDIwNTI0MjgyNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Technische_Universitaet_Muenchen?enrichId=rgreq-4f03d8941c5bc892539aea183447d4da-XXX&enrichSource=Y292ZXJQYWdlOzI5ODQyNzExOTtBUzo1NzU0MzI2NDkzMTQzMDRAMTUxNDIwNTI0MjgyNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel_Straub?enrichId=rgreq-4f03d8941c5bc892539aea183447d4da-XXX&enrichSource=Y292ZXJQYWdlOzI5ODQyNzExOTtBUzo1NzU0MzI2NDkzMTQzMDRAMTUxNDIwNTI0MjgyNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Iason_Papaioannou?enrichId=rgreq-4f03d8941c5bc892539aea183447d4da-XXX&enrichSource=Y292ZXJQYWdlOzI5ODQyNzExOTtBUzo1NzU0MzI2NDkzMTQzMDRAMTUxNDIwNTI0MjgyNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Iason_Papaioannou?enrichId=rgreq-4f03d8941c5bc892539aea183447d4da-XXX&enrichSource=Y292ZXJQYWdlOzI5ODQyNzExOTtBUzo1NzU0MzI2NDkzMTQzMDRAMTUxNDIwNTI0MjgyNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Technische_Universitaet_Muenchen?enrichId=rgreq-4f03d8941c5bc892539aea183447d4da-XXX&enrichSource=Y292ZXJQYWdlOzI5ODQyNzExOTtBUzo1NzU0MzI2NDkzMTQzMDRAMTUxNDIwNTI0MjgyNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Iason_Papaioannou?enrichId=rgreq-4f03d8941c5bc892539aea183447d4da-XXX&enrichSource=Y292ZXJQYWdlOzI5ODQyNzExOTtBUzo1NzU0MzI2NDkzMTQzMDRAMTUxNDIwNTI0MjgyNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wolfgang_Betz?enrichId=rgreq-4f03d8941c5bc892539aea183447d4da-XXX&enrichSource=Y292ZXJQYWdlOzI5ODQyNzExOTtBUzo1NzU0MzI2NDkzMTQzMDRAMTUxNDIwNTI0MjgyNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wolfgang_Betz?enrichId=rgreq-4f03d8941c5bc892539aea183447d4da-XXX&enrichSource=Y292ZXJQYWdlOzI5ODQyNzExOTtBUzo1NzU0MzI2NDkzMTQzMDRAMTUxNDIwNTI0MjgyNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Technische_Universitaet_Muenchen?enrichId=rgreq-4f03d8941c5bc892539aea183447d4da-XXX&enrichSource=Y292ZXJQYWdlOzI5ODQyNzExOTtBUzo1NzU0MzI2NDkzMTQzMDRAMTUxNDIwNTI0MjgyNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wolfgang_Betz?enrichId=rgreq-4f03d8941c5bc892539aea183447d4da-XXX&enrichSource=Y292ZXJQYWdlOzI5ODQyNzExOTtBUzo1NzU0MzI2NDkzMTQzMDRAMTUxNDIwNTI0MjgyNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel_Straub?enrichId=rgreq-4f03d8941c5bc892539aea183447d4da-XXX&enrichSource=Y292ZXJQYWdlOzI5ODQyNzExOTtBUzo1NzU0MzI2NDkzMTQzMDRAMTUxNDIwNTI0MjgyNw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Rare event BUS  1/37 

Accepted for publication in Journal of Computational Physics, March 2016 

 

Bayesian analysis of rare events 
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Abstract 

In many areas of engineering and science there is an interest in predicting the probability of 

rare events, in particular in applications related to safety and security. Increasingly, such 

predictions are made through computer models of physical systems in an uncertainty 

quantification framework. Additionally, with advances in IT, monitoring and sensor technology, 

an increasing amount of data on the performance of the systems is collected. This data can be 

used to reduce uncertainty, improve the probability estimates and consequently enhance the 

management of rare events and associated risks. Bayesian analysis is the ideal method to 

include the data into the probabilistic model. It ensures a consistent probabilistic treatment of 

uncertainty, which is central in the prediction of rare events, where extrapolation from the 

domain of observation is common. We present a framework for performing Bayesian updating 

of rare event probabilities, termed BUS. It is based on a reinterpretation of the classical 

rejection-sampling approach to Bayesian analysis, which enables the use of established 

methods for estimating probabilities of rare events. By drawing upon these methods, the 

framework makes use of their computational efficiency. These methods include the First-Order 

Reliability Method (FORM), tailored importance sampling (IS) methods and Subset Simulation 

(SuS). In this contribution, we briefly review these methods in the context of the BUS 

framework and investigate their applicability to Bayesian analysis of rare events in different 

settings. We find that, for some applications, FORM can be highly efficient and is surprisingly 

accurate, enabling Bayesian analysis of rare events with just a few model evaluations. In a 

general setting, BUS implemented through IS and SuS is more robust and flexible.  

Keywords 

Rare events; reliability; Bayesian analysis; importance sampling; subset simulation. 
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1 Introduction 

The probability of rare events is of interest in many physical systems. Examples include the 

probability of infrastructure system failures (Duenas-Osorio and Vemuru 2009), the probability 

of failure of technical systems in general (Bedford and Cooke 2001), probabilities of extreme 

natural hazard events (Cornell 1968), or probabilities of extreme climate developments (Dessai 

and Hulme 2004). The optimal management of such adverse rare events is strongly facilitated 

by the availability of accurate probability assessments. Purely statistical methods are often not 

sufficient for this task, due to the uniqueness of the considered systems and the fact that accurate 

estimation of rare event probabilities requires large datasets (Straub 2014). An alternative is the 

assessment of rare events through the use of physical models, in combination with probabilistic 

models of the relevant model parameters. In physical systems, uncertainty is present in material 

and geometrical properties, environmental factors and the models themselves. By modeling 

these uncertainties probabilistically and propagating them through the physical models, a 

probabilistic description of the model output is obtained.   

Methods for computing the probability of rare events based on physical and engineering models 

have been developed since the 1970s in the field of structural reliability (Rackwitz and Fiessler 

1978, Der Kiureghian and Liu 1986). Methodological developments were motivated by the 

demand for rational approaches to dealing with uncertainty in the design of structural systems, 

which have high requirements to their safety. For structures and other safety-critical technical 

systems, requirements to the probability of failure are in the order of 10−4 − 10−6 during the 

lifetime of the system, or as low as 10−8 during one hour of operation (Paté-Cornell 1994). The 

computation of such small probabilities through the use of probabilistic physical models 

corresponds to an extrapolation, and the resulting probabilities must be interpreted carefully, a 

fact that is well appreciated by experts in structural reliability (Melchers 1999).  

To improve the estimates of rare event probabilities, data obtained on the actual system, e.g., 

through monitoring systems or measurement campaigns, can provide useful information on the 

potential rare event. As an example, in geotechnical engineering, the observational method is 

commonly used to limit the risk of catastrophic failures (Peck 1969). To systematically and 

quantitatively include such data into rare event probabilities, Bayesian analysis provides an 

optimal framework. Often, data is available on the input parameters to the model of the system. 

In these cases, Bayesian analysis can be used to learn (update) their probability distributions 

(Gelman 2004). This corresponds to a classical statistical analysis, and we will not further go 

into this. We focus on systems where data is available on the system response. In these cases, 

Bayesian analysis is commonly used as a technique to solve the inverse problem of determining 
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probabilistically the input parameters given output data. It is e.g. applied to the solution of 

inverse problems in subsurface flow (Elsheikh et al. 2014), structural identification (Beck and 

Katafygiotis 1998) or hydrology (Kavetski et al. 2006), to name just a few examples.  

When the interest is in the probability of rare events conditional on the data, it is possible to 

first perform a Bayesian analysis to learn the probability distribution of the input parameters, 

and then apply these updated distributions to the prediction of the rare events. Such an approach 

has e.g. been pursued in (Papadimitriou et al. 2001, Jensen et al. 2013, Sundar and Manohar 

2013, Hadjidoukas et al. 2015). The resulting conditional probability is often termed the 

posterior robust failure probability in the literature. (The word robust is avoided in this paper, 

as it implies explicit modeling of the model uncertainties through multiple model classes 

(Papadimitriou et al. 2001), which is not considered here.) The difficulty in estimating the 

posterior failure probability lies in the fact that the rare event probability cannot be efficiently 

estimated using a crude Monte Carlo simulation approach. Therefore, the method for Bayesian 

inverse analysis must be combined with a separate efficient method for evaluating rare event 

probabilities. Most of these methods require explicit knowledge of the joint (posterior) 

probability distribution of the random variables, which must thus be approximated from the 

posterior samples. This approximation can cause significant errors.   

In contrast to these approaches, we develop a framework that enables the computation of the 

posterior distribution and the conditional probability of the rare event with a single method. 

This has the advantage that it is not required to employ an approximate posterior distribution 

as an input to a posterior rare event probability estimation. This is achieved by combining the 

simple but ineffective rejection sampling approach to Bayesian analysis with structural 

reliability methods (SRM). For this reason it is termed BUS (Bayesian Updating with SRM). 

Besides its simplicity, the framework can potentially lead to computational benefits over 

existing approaches, since it enables the use of all existing SRM for this task. In (Straub and 

Papaioannou 2015), we proposed BUS for learning the posterior distribution of the input 

variables. Here, we show that it is ideally suited for Bayesian analysis of rare events and present 

its implementation.  

The paper starts out with an introduction to the estimation of rare event probabilities through 

classical SRM, in particular the first-order reliability method (FORM). This is followed by a 

short review of possible approaches to computing the updated rare event probability. We then 

introduce the BUS methodology for rare events and its implementation with three SRM: FORM, 

line sampling and subset simulation. Finally, the methodology is illustrated and investigated 

through four numerical examples. 
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2 Methodology 

2.1 Computing probabilities of rare events: Structural reliability methods 

For efficiently estimating the probability of rare events, a class of methods called Structural 

Reliability Methods (SRM) has been developed since the 1970s (e.g., Rackwitz and Fiessler 

1978, Der Kiureghian and Liu 1986). The following briefly introduces the basic concepts of 

SRM; comprehensive introductions can be found in (Ditlevsen and Madsen 1996, Melchers 

1999). 

In SRM, the rare event of interest, typically the failure event 𝐹, is described in terms of a so-

called limit state function 𝑔(𝐗), where 𝐗 = [𝑋1; 𝑋2; … ; 𝑋𝑛] is the vector of the 𝑛 input random 

variables of the problem. By definition, the event 𝐹 corresponds to  

𝐹 = {𝑔(𝐗) ≤ 0} (1) 

It is helpful to interpret the SRM geometrically: Ω𝐹 corresponds to the domain in the outcome 

space of 𝐗 for which 𝑔(𝐱) ≤ 0. The probability of the event 𝐹 is the probability of 𝐗 taking a 

value within Ω𝐹. It can be computed by integrating the joint probability density function of 𝐗, 

denoted by 𝑓𝐗(𝐱), over Ω𝐹: 

Pr(𝐹) = ∫ 𝑓𝐗(𝐱)d𝑥1d𝑥2 … d𝑥𝑛

𝑔(𝐱)≤0

 (2) 

The problem is illustrated in Figure 1a. For the case of two random variables, as in Figure 1a, 

numerical integration is straightforward, e.g. using adaptive quadrature rules that resolve the 

boundary of Ω𝐹. However, most classical methods for numerical integration have computation 

times that increase exponentially with the number of dimensions, and are therefore not suitable 

for solving Eq. (2) for realistic applications with larger values of 𝑛. 

All SRM aim at solving Eq. (2), and each method has its specific advantages and disadvantages. 

Most SRM involve a transformation of the problem from the original space of the random 

variables 𝐗 to the space of independent standard normal random variables 𝐔 by a suitable 

transformation 𝐔 = 𝐓(𝐗). If the 𝐗 are (a-priori) mutually independent, the transformation is 

simply 

𝑈𝑖 = Φ−1[𝐹𝑋𝑖
(𝑋𝑖)], 𝑖 = 1, … , 𝑛 (3) 
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where 𝐹𝑋𝑖
 is the marginal cumulative distribution function (CDF) of 𝑋𝑖 and Φ−1 is the inverse 

standard normal CDF. If the joint distribution of 𝐗 is of the Gaussian copula class, the Nataf 

transformation can be applied (Der Kiureghian and Liu 1986); if the joint distribution of 𝐗 is of 

any arbitrary form, the Rosenblatt transformation can be used (Rosenblatt 1952, Hohenbichler 

and Rackwitz 1981). The reader is referred to (Ditlevsen and Madsen 1996) and (Melchers 

1999) for details.  

Probabilistic transformation techniques require the joint distribution of 𝐗 to be known explicitly. 

That is, any arbitrary distribution can be transformed to standard normal space, provided that 

the distribution is known. For cases where the distribution of 𝐗 is not known in explicit form 

and thus such a transformation is not possible, there exist SRM that can be applied directly in 

the original random variable space. Hence, the probabilistic transformation step is not a strict 

requirement for further developments. However, in most practical situations the distribution of 

𝐗 is known and the probabilistic transformation is straightforward. Moreover, the performance 

of most SRM can benefit from an implementation in the 𝐔-space. 

Let 𝐺 denote the transformed limit state function in standard normal space:  

𝐺(𝐔) = 𝑔(𝐓−1(𝐔)) (4) 

where 𝐓−1(𝐔) = 𝐗 is the inverse transformation from standard normal space to the original 

outcome space of the random variables. The transformation 𝐓  is probability conserving, 

therefore Pr(𝐹) = Pr(𝑔(𝐗) ≤ 0) = Pr(𝐺(𝑼) ≤ 0). In analogy to Eq. (2), the probability of the 

failure event 𝐹 is now computed by  

Pr(𝐹) = ∫ 𝜑(𝐮)d𝑢1d𝑢2 … d𝑢𝑛

𝐺(𝐮)≤0

, (5) 

where 𝜑 is the multivariate independent standard normal probability density function (PDF). 

The transformation of the limit state surface 𝑔(𝐱) = 0 to the corresponding surface in standard 

normal space 𝐺(𝐮) = 0 is illustrated in Figure 1.  

2.1.1 Structural reliability methods based on the most likely failure point 

The most well-known SRM is the First-Order Reliability Method (FORM), which approximates 

the limit state function 𝐺(𝐔) by a first-order Taylor expansion at the expansion point 𝐮∗ , 

denoted by 𝐺′(𝐔). To limit the approximation error, 𝐮∗ is selected as the point in the failure 
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domain with the highest probability density, the so-called most likely failure point or design 

point1. Because the standard multivariate normal PDF 𝜑  is rotation-symmetric around the 

origin, the design point 𝐮∗  is equal to the point on the failure surface 𝐺(𝐔) = 0 that is the 

closest to the origin. The identification of the expansion point therefore corresponds to a 

constrained (geometrical) minimization problem: 

𝐮∗ = arg min‖𝐮‖ 

subject to 𝐺(𝐮) = 0, 
(6) 

where ‖𝐮‖ = √𝐮T𝐮 is the distance of 𝐮 from the origin.  

With this approximation, the limit state surface is approximated by its tangent at the design 

point, see Figure 1b. In FORM, the integration over the domain {𝐺(𝐮) ≤ 0} is thus replaced by 

the integration over a half space defined by the tangent {𝐺′(𝐮) = 0} . Every marginal 

distribution of the multivariate independent standard normal distribution is a standard normal 

distribution. Therefore, the marginal probability distribution of 𝐔 in the direction perpendicular 

to the linearized limit state surface is also a standard normal distribution, as illustrated in Figure 

1. The FORM approximation of the probability of failure is fully defined by the distance 

βFORM = ‖𝐮∗‖ between the origin and the design point as 

Pr(𝐹) ≈ Pr(𝐺′(𝐔) ≤ 0) = Φ(−βFORM) (7) 

where Φ is the standard normal cumulative distribution function (CDF). βFORM is known as the 

FORM reliability index2.  

The computational bottleneck of FORM is the identification of the design point 𝐮∗, i.e. the 

solution of the optimization problem of Eq. (6). Tailored algorithms exist for this purpose (Liu 

and Der Kiureghian 1991). Since these are gradient-based methods, the computational cost of 

the optimization increases with increasing number of dimensions 𝑛 . Specialized response 

surface methods have been developed to limit the number of calls of the function 𝑔(𝐗), e.g. 

                                                 

1 The term design point originates from the fact that 𝐱∗ = 𝐓−1(𝐮∗) are the parameter values that are ideally used 

in a deterministic design calculation, in order to capture the likely failure configuration, see (Melchers 1999).   

2 If the limit state function is negative at the origin 𝟎, then βFORM = −‖𝐮∗‖ and the FORM estimate is larger than 

0.5. In such cases, however, FORM should not be applied.  
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(Bucher and Bourgund 1990, Sudret 2012), but their performance also deteriorates with 

increasing dimensions.  

  

Figure 1. Design point and linear approximation of the limit state surface. Left side: original random 
variable space; right side: standard normal space. The marginal distribution of 𝑼 in the direction of 
the design point 𝒖∗ is the standard normal distribution. Hence the FORM approximation of the failure 
probability is given by Eq. (7). [Details of this example are provided in (Straub 2014).] 

Once the design point is identified, FORM is surprisingly accurate for a wide range of problems 

(Rackwitz 2001). However, the approximation error is difficult to estimate, and it is often 

beneficial to check and improve the accuracy of FORM by a second-order approximation 

around the design point (Breitung 1984). As a general rule, the accuracy of FORM decreases 

with increasing dimensions 𝑛, but many high-dimensional problems can be handled by suitable 

dimensionality-reduction techniques, see e.g. (Allaix and Carbone 2015) for the coupling of 

FORM with a Karhunen–Loève expansion. Additionally, specific techniques for importance 

sampling around the design point have been developed, some of which also work in high 

dimensions. One of these techniques, line sampling, is introduced later.  

2.1.2 Sampling-based structural reliability methods 

A large number of sampling-based SRM exist for estimating the probability of rare events. 

These include a variety of importance sampling (IS) techniques that aim at a reduction of the 

variance of standard Monte Carlo probability estimates. The efficiency of IS highly depends on 

the choice of the sampling density. Common choices are unimodal IS densities centered in the 
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design point obtained from a preliminary FORM analysis (Schuëller and Stix 1987). 

Alternatively, adaptive IS techniques that do not require knowledge of the design point are 

popular (Bucher 1988, Engelund and Rackwitz 1993, Au and Beck 1999). In this category, 

cross-entropy-based IS schemes have recently been proposed for rare event estimation (Botev 

et al. 2007, Li et al. 2011, Kurtz and Song 2013), as well as sequential IS (Papaioannou et al. 

2014). To enhance the efficiency of IS methods, importance sampling schemes have been 

combined with response surface approaches (surrogate models) (Bucher and Bourgund 1990, 

Paffrath and Wever 2007, Li and Xiu 2010, Li et al. 2011). 

An importance sampling approach that enables efficient estimation of the probability of rare 

events is the line sampling method (Hohenbichler and Rackwitz 1988, Rackwitz 2001, 

Koutsourelakis et al. 2004). Line sampling generates samples on a hyperplane orthogonal to an 

important direction pointing to the limit state surface. The direction can be chosen as the one 

pointing to the design point or based on the results from an initial Monte Carlo simulation. The 

method is shown to be efficient in problems with a large number of random variables 𝑛 

(Pradlwarter et al. 2007). Line sampling will be utilized later in this paper and is described in 

Section 3.2. 

In recent years, Subset Simulation (SuS) proposed in (Au and Beck 2001) has become a popular 

SRM. It belongs to the family of sequential Monte Carlo methods (Del Moral et al. 2006, Cérou 

et al. 2012). In contrast to standard IS with unimodal or multimodal IS densities, the 

performance of SuS is not directly dependent on the number of input random variables 𝑛 

(Schuëller et al. 2004, Katafygiotis and Zuev 2007). SuS has also been combined with surrogate 

models (e.g., Bourinet et al. 2011). A short summary of SuS is provided in Section 3.3.  

2.2 Bayesian analysis of rare events 

In many instances, data 𝐝 is available, which provides information directly or indirectly on the 

random variables 𝐗 in the limit state function. In a Bayesian setting, the data is used to update 

the prior probability distribution 𝑓𝐗 to a posterior distribution 𝑓𝐗|𝐝: 

𝑓𝐗|𝐝(𝐱) ∝ 𝐿(𝐱)𝑓𝐗(𝐱) (8) 

𝐿(𝐱) = 𝑓𝐃|𝐗(𝐝|𝐱) is the likelihood function describing the data. Note that the data may not 

provide information on all random variables in 𝐗. For example, one can distinguish between 

uncertain model parameters, which can be learned, and uncertain future forcing variables, 

which cannot be learned. In the following, we do not make this distinction, and note that the 
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likelihood function is simply constant with respect to all random variables in 𝐗 on which the 

data contains no information.   

Conversely, in some cases the likelihood can only be explicitly formulated as a function of 

additional input random variables that do not affect the limit state function 𝑔. This is e.g. the 

case in dynamic systems, in which the data are measurements of system responses that are a 

function of possibly uncertain forcing variables. In such situations, the vector 𝐗 is augmented 

by these random variables. In principle it is possible to separate these variables within the 

framework (e.g. following (Beck 2010)), and this may have implications on the computational 

efficiency (Hadjidoukas et al. 2015). However, for ease of presentation we here choose to not 

make this distinction and include in 𝐗 all random variables that are arguments of the likelihood 

function. 

The probability of the rare event conditional on the data, i.e. the posterior failure probability, is 

obtained by inserting the posterior 𝑓𝐗|𝐝(𝐱) into Eq. (2): 

Pr(𝐹|𝐝) = ∫ 𝑓𝐗|𝐝(𝐱) d𝑥1d𝑥2 … d𝑥𝑛

𝑔(𝐱)≤0

 (9) 

In the general case, only an approximation of the posterior PDF 𝑓𝐗|𝐝 or CDF 𝐹𝐗|𝐝 is available, 

typically through samples of 𝑓𝐗|𝐝 . Most SRM have difficulties in working with such an 

approximation, which might limit the efficiency in determining Pr(𝐹|𝐝). One exception is SuS, 

which is employed in (Jensen et al. 2013, Hadjidoukas et al. 2015) for evaluating Eq. (9) starting 

from samples of the posterior. However, it is often efficient to apply SuS in standard normal 

space, as discussed in (Papaioannou et al. 2015), which requires explicit knowledge of 𝑓𝐗|𝐝.  

For these reasons, there is a benefit in developing a framework that does not required solving 

Eq. (9) based on samples of the posterior, but enables a computation of the posterior failure 

probability Pr(𝐹|𝐝)  directly within the framework of SRM. Already in the 1980s, such a 

concept was proposed, which has similarities with the ABC method, as reviewed in the next 

section. A novel framework, which does not require the approximation made by ABC, is then 

presented in Section 2.4. 

2.3 ABC and early methods for updating structural reliability  

In recent years, Approximate Bayesian Computation (ABC) has become a popular approach for 

performing Bayesian analysis. It circumvents the explicit formulation of a likelihood function 
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and can handle potentially large numbers of uncertain parameters and data. Consider 

measurements 𝐝 that correspond to model outputs 𝑞(𝐗). With additive measurement errors 𝛜, 

the likelihood function is 𝐿(𝐱) = 𝑓𝛜[𝐝 − 𝑞(𝐱)], but alternatively these measurements can be 

described by the equality 𝐝 = 𝑞(𝐱) + 𝜖 . ABC is a sampling-based method that can be 

summarized as follows3: Applying a simple acceptance/rejection algorithm, hypothetical data 

𝐝̂(𝐱) are generated based on sampling of 𝐗 and 𝛜 from their respective prior distribution. A 

performance metric 𝜌 is formulated, which gives a measure of the “distance” from 𝐝̂(𝐱) to the 

actually observed data 𝐝. Samples of 𝐗 are then accepted if their 𝜌 is within a certain tolerance 

limit 𝜏: 

𝜌(𝐝̂(𝐱), 𝐝) ≤ 𝜏 (10) 

For details on the performance measures and for more efficient versions of the sampling 

algorithms, the reader is referred to the extensive ABC literature, e.g. (Beaumont et al. 2009, 

Csilléry et al. 2010, Fearnhead and Prangle 2012, Marin et al. 2012) 

In the structural reliability community, a related approach had been proposed for Bayesian 

updating of the probability of failure already in the 1980s (Madsen et al. 1985, Madsen 1987, 

Schall et al. 1989). By including measurement errors explicitly as random variables 𝛜, the data 

was described through functions ℎ𝑖 in analogy to the limit state function 𝑔. For a data point 𝑑, 

the function would be ℎ(𝐱) = 𝑑̂(𝐱) − 𝑑, and it is required that ℎ(𝐱) = 0. This corresponds to 

setting a tolerance 𝜏 = 0 in Eq. (10). In the structural reliability context, 𝑍 = {ℎ(𝐗) = 0} is 

defined as an observation event, and Pr(𝐹|𝑍) = Pr(𝐹|𝑑) is estimated by first- or second-order 

approximations of surface integrals (Schall et al. 1989). 

These methods did not gain much attention, because the error associated with the first-order 

approximation increases with increasing amount of data, and the concept is incompatible with 

sampling-based SRM due to the inability of sampling methods to produce estimates of surface 

integrals (Sindel and Rackwitz 1998). However, by observing the strong analogy to ABC, the 

approach can be reformulated in a way that facilitates the use of sampling-based SRM. Both 

approaches circumvent the likelihood function by explicitly introducing measurement errors 𝛜 

as random variables in the formulation. In the outcome space of the random variables 𝐗 and 𝛜, 

                                                 

3 The notation here differs from the standard notation used in the ABC literature, to be consistent with the 

remainder of this paper. In the ABC literature, 𝜖 commonly denotes the tolerance instead of 𝜏 used here, 𝜃 denotes 

the random variables instead of 𝐗. 
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the observations then correspond to a lower-dimensional surface. Casting the ABC approach in 

the structural reliability framework, the performance function can be defined as |ℎ(𝐱, 𝛜)| and 

the approximate observation domain written as: 

𝑍 = {|ℎ(𝐗, 𝛜)| ≤ 𝜏} (11) 

The probability of this approximate observation event is a domain integral, and hence sampling 

methods are applicable. (Chiachio et al. 2014) have proposed such an approach for learning 

model parameters through ABC with SuS.   

2.4 Bayesian analysis in a structural reliability framework: the BUS 

approach 

In (Straub and Papaioannou 2015), based on earlier work published in (Straub 2011), we 

propose a methodological framework termed BUS, which stands for Bayesian Updating with 

Structural reliability methods. BUS can be interpreted as an extension of the classical rejection 

sampling approach to Bayesian analysis. In this approach, samples 𝐱𝑘 are randomly generated 

from the prior distribution of 𝐗. The samples are then accepted with probability 𝑝 = 𝑐𝐿(𝐱𝑘). 

The constant 𝑐  can be any positive real number that fulfills 𝑐 ≤ 1/ sup 𝐿(𝐱) . It is 

straightforward to show that the accepted samples follow the posterior distribution 𝑓𝐗|𝑍(𝐱) ∝

𝑓𝐗(𝐱)𝐿(𝐱), e.g. (Smith and Gelfand 1992). The principle of the rejection sampling approach is 

illustrated in Figure 2a.  

The problem with the simple rejection sampling algorithm is its inefficiency. The acceptance 

probability of samples is equal to ∫ 𝑐𝐿(𝐱)𝑓𝐗(𝐱)d𝐱
𝑫𝐗

, with 𝑫𝐗 denoting the domain of definition 

of 𝐗. This probability quickly decreases as the difference between the prior distribution and the 

likelihood increases, which occurs with increasing amount of data. This is particularly critical 

if weakly or non-informative priors are used. The central idea of BUS is to deal with this small 

acceptance probability by employing structural reliability methods that allow to efficiently 

compute rare event probabilities.  
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Figure 2. Illustration of the simple rejection sampling algorithm for the case of updating a random 
variable 𝑋, whose prior distribution is the standard normal 𝑓𝑋(𝑥) ∝ 𝑒𝑥𝑝(−𝑥2/2) and whose 
likelihood is the normal distribution centered around a measured value 2 with standard deviation 
𝜎𝑚 = 0.5: 𝐿(𝑥) = 𝑒𝑥𝑝[−1/2 × (𝑥 − 2)2/0.52 ]. (a) Samples of 𝑓𝑋(𝑥)𝑓𝑃(𝑝): all samples in the green 
domain are accepted and follow the posterior distribution; (b) samples from the standard normal 
distribution, with the acceptance domain according to Eq. (18); (c) empirical CDF corresponding to 
the accepted samples in (a) and (b), together with the exact posterior CDF.  

The rejection sampling principle can be cast in the structural reliability framework by 

considering the augmented random vector [𝑃; 𝐗], where 𝑃 is the standard uniform random 

variable that determines whether a sample is accepted or rejected. In rejection sampling, the 

posterior distribution of 𝐗 is obtained by censoring the joint distribution of 𝑃 and 𝐗 to the 

domain {𝑝 ≤ 𝑐𝐿(𝐱)} and marginalizing 𝐗:  

𝑓𝐗|𝐝(𝐱) ∝ ∫ 𝟏𝑍(𝑝, 𝐱) 𝑓𝐗(𝐱) d𝑝
1

0

. (12) 
 

𝟏𝑍 is the indicator function, which takes value one if {𝑝 ≤ 𝑐𝐿(𝐱)} and zero otherwise. The 

proportionality constant in Eq. (12) is ∫ ∫ 𝟏𝑍(𝑝, 𝐱) 𝑓𝐗(𝐱) d𝑝
1

0
d𝑥1d𝑥2 … d𝑥𝑛𝑫𝐗

.  

We define the observation event as  

𝑍 = {𝑃 ≤ 𝑐𝐿(𝐗)}. (13)  

Eq. (12) states that the conditional PDF of 𝐗 given the data 𝐝 is obtained by conditioning the 

prior distribution on the observation event 𝑍. In contrast to the observation event 𝑍 defined 

according to Eq. (11) (the ABC criterion) this new definition of the observation domain is not 

an approximation, i.e. it describes the data exactly in a Bayesian framework. Because of this 

equivalence of 𝑍 with the data, it follows that conditioning the probability of 𝐹 on the data is 

equivalent to conditioning it on 𝑍: 
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Pr(𝐹|𝐝) = Pr(𝐹|𝑍). (14)  

In the remainder, we will write Pr(𝐹|𝑍) for the conditional probability of the rare event given 

the data. It can be obtained by combining Eq. (2) with Eq. (12): 

Pr(𝐹|𝑍) = ∫ 𝑓𝐗|𝐝(𝐱)d𝑥1d𝑥2 … d𝑥𝑛

𝑔(𝐱)≤0

 

=
∫ ∫ 𝟏𝑍(𝑝, 𝐱)𝑓𝐗(𝐱) d𝑝

1

0
d𝑥1d𝑥2 … d𝑥𝑛𝑔(𝐱)≤0

∫ ∫ 𝟏𝑍(𝑝, 𝐱)𝑓𝐗(𝐱) d𝑝
1

0
d𝑥1d𝑥2 … d𝑥𝑛𝑫𝐗

 

(15) 

To comply with structural reliability conventions, we define the observation domain {𝑝 ≤

𝑐𝐿(𝐱)}  through a limit state function ℎ, such that the domain corresponds to {ℎ(𝑝, 𝐱) ≤ 0}: 

ℎ(𝑝, 𝐱) = 𝑝 − 𝑐𝐿(𝐱).  (16) 

Eq. (15) can now be rewritten to 

Pr(𝐹|𝑍) =
∫ 𝑓𝐗(𝐱)d𝑝 d𝑥1d𝑥2 … d𝑥𝑛𝑔(𝐱)≤0∩ℎ(𝑝,𝐱)≤0

∫ 𝑓𝐗(𝐱)d𝑝 d𝑥1d𝑥2 … d𝑥𝑛ℎ(𝑝,𝐱)≤0

 

=
Pr[𝑔(𝐗) ≤ 0 ∩ ℎ(𝑃, 𝐗) ≤ 0]

Pr[ℎ(𝑃, 𝐗) ≤ 0]
 

(17) 

For applying SRM, it is convenient to transform the problem to standard normal space. The 

corresponding function 𝐻 is 

𝐻(𝐮) = 𝑢0 − Φ−1 (𝑐𝐿 (𝐓−𝟏(𝑢1, … , 𝑢𝑛))). 
 

(18) 

with Φ−1 being the inverse standard normal CDF. 𝑈0 is the standard normal random variable 

corresponding to 𝑃. The observation domain {𝐻(𝐮) ≤ 0} corresponding to the simple example 

of Figure 2a is shown in Figure 2b, together with the transformed samples.  

The probability of the rare event 𝐹 conditional on the data can now be expressed in terms of the 

standard normal 𝐔:   

Pr(𝐹|𝑍) =
Pr[𝐺(𝐔) ≤ 0 ∩ 𝐻(𝐔) ≤ 0]

Pr[𝐻(𝐔) ≤ 0]
 (19) 
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In section 3, we present three SRM for computing the numerator and the denominator of Eq. 

(19). 

2.4.1 Constant 𝑐 

BUS requires the choice of the constant 𝑐. The probabilities in the numerator and denominator 

of Eqs. (17) and (19) increase linearly with 𝑐. If the efficiency of the SRM used for computing 

these probabilities decreases with decreasing probabilities, then the value of 𝑐 should be chosen 

as large as possible, i.e. as close as possible to [sup 𝐿(𝐱)]−1. In many applications, this value 

is not known a-priori. In (Straub and Papaioannou 2015) it is proposed to choose a value of 𝑐 

that is < [sup 𝐿(𝐱)]−1  with some probability, which can be achieved by analyzing the 

likelihood function. In (Betz et al. 2014a) and (Au et al. 2015), it is shown how the constant 𝑐 

can be selected adaptively when applying SuS.  

When combined with FORM and FORM-based methods, the performance of the BUS approach 

can depend on 𝑐 , but a larger 𝑐  is not necessarily beneficial in this case. In fact, as we 

demonstrate in the numerical examples, a smaller value of 𝑐 can increase the accuracy of line 

sampling based on FORM.  

3 Implementation of BUS for rare events 

The application of BUS for updating the probability of a rare event 𝐹 requires the solution of 

Eqs. (17) or (19).  SRM are applied to efficiently evaluate the numerator and the denominator 

in these equations. We present the application of three of these methods, FORM, line sampling 

and SuS, each of which has its specific advantages and disadvantages.  

3.1 BUS with FORM 

As pointed out earlier, FORM is a powerful method for estimating the probability of rare events 

in problems with limited number of (relevant) random variables. From all SRM, it is often the 

one requiring the smallest number of model evaluations. If FORM is used to perform Bayesian 

updating with BUS following Eq. (19), one has to consider that the shape of the observation 

domain {𝐻(𝐮) ≤ 0} is different from the shapes of the failure domains usually encountered. 

Consider the observation domain of Figure 2. In Figure 4, the FORM approximation to this 

domain is illustrated.  
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Figure 3. FORM approximation of the observation domain of the example from Figure 2. The dashed 
line is the linearized surface {𝐻(𝒖) = 0}. The green dots are the samples from Figure 2 that would be 
correctly accepted according to the FORM approximation, the red dots are the samples that would be 
wrongly accepted.  

The FORM estimate of the denominator in Eq. (19), Pr[𝐻(𝐔) ≤ 0], is obtained according to 

Eqs. (6) and (7), wherein 𝐺(𝐔) is replaced with 𝐻(𝐔). 

The application of FORM in BUS requires the solution of system reliability problems, which 

are characterized by multiple limit state functions. The numerator in Eq. (19), Pr[𝐺(𝐔) ≤ 0 ∩

𝐻(𝐔) ≤ 0], is an intersection, and the corresponding FORM solution is based on linearizing 

both functions 𝐺(𝐮) and 𝐻(𝐮) at the so-called joint design point 𝐮∗, identified as follows: 

𝐮∗ = arg min‖𝐮‖ 

s.t. 𝐺(𝐮) ≤ 0, 𝐻(𝐮) = 0 
(20) 

In classical applications of FORM, the second constraint is 𝐻(𝐮) ≤ 0. Because it can occur that 

the function 𝐻 is negative at the origin 𝟎, i.e. 𝐻(𝟎) < 0, the equality constraint is used instead 

to ensure that the joint design point is on the boundary of the domain {𝐻(𝐮) ≤ 0}.  

For details on the classical FORM solution to system problems, the reader is referred to (Der 

Kiureghian 2005). The linear approximations of the two limit state functions are described by 

their normalized gradient row vectors 𝛂𝐺
∗  and 𝛂𝐻

∗ , calculated at the joint design point as: 

𝛂𝐺
∗ = −

∇𝐺(𝐮∗)

‖∇𝐺(𝐮∗)‖
 (21) 

𝛂𝐻
∗ = −

∇𝐻(𝐮∗)

‖∇𝐻(𝐮∗)‖
 (22) 
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The FORM estimate to the probability Pr[𝐺(𝐔) ≤ 0 ∩ 𝐻(𝐔) ≤ 0] is obtained by computing 

the distance of the linearized surfaces 𝐺(𝐔) = 0 and 𝐻(𝐔) = 0 from the origin: 

𝛽𝑖
∗ = 𝛂𝑖

∗𝐮∗ (23) 

and by determining the correlation coefficient between 𝐺(𝐔) and 𝐻(𝐔): 

𝜌𝐺𝐻
∗ = 𝛂𝐺

∗ 𝛂𝐻
∗ T

 (24) 

The FORM estimate is: 

Pr[𝐺(𝐔) ≤ 0 ∩ 𝐻(𝐔) ≤ 0] ≈ Φ2 ([
−𝛽𝐺

∗

𝛽𝐻
∗ ] ; [

1 −𝜌𝐺𝐻
∗

−𝜌𝐺𝐻
∗ 1

]) (25) 

or 

Pr[𝐺(𝐔) ≤ 0 ∩ 𝐻(𝐔) ≤ 0] ≈ Φ2 (− [
𝛽𝐺

∗

𝛽𝐻
∗ ] ; [

1 𝜌𝐺𝐻
∗

𝜌𝐺𝐻
∗ 1

]) (26) 

wherein Φ2(𝐁 ; 𝐑)  is the bivariate standard normal CDF with argument 𝐁  and correlation 

coefficient matrix 𝐑 . The FORM approximation is illustrated in Figure 4. Equation (25) 

corresponds to the case where the observation domain is oriented towards the origin, i.e. when 
𝑑

𝑑𝑎
𝐻(𝛂𝑖

∗(𝛽𝑖
∗ + 𝑎))  evaluated at 𝑎 = 0  is positive (Figure 4a). Equation (26) holds if the 

observation domain is oriented away from the origin, i.e. when 
𝑑

𝑑𝑎
𝐻(𝛂𝑖

∗(𝛽𝑖
∗ + 𝑎)) evaluated at 

𝑎 = 0 is negative (Figure 4b)4. 

In some cases, such as the one depicted in Figure 4b, the accuracy of the FORM estimate could 

potentially be enhanced by considering additional linearization points (see Figure 4c). However, 

this approach is not recommended in general. In a lower-dimensional setting, the probability 

contribution of the domain that is mistakenly included is often small, as in the example of Figure 

3. In a higher-dimensional setting, the identification of the potentially large number of 

linearization points is difficult, if not impossible, to achieve. For this reason, in higher 

dimensions, FORM is not expected to provide accurate estimates for the numerator or the 

denominator of Eq. (19). However, there are cases in which the errors made in the numerator 

                                                 

4 Note that Eq. (26) is the standard result found in references on FORM system reliability. The result of Eq. (25) 

is specific to the application of FORM in BUS. 
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and the denominator are approximately proportional, and FORM can provide good estimates 

even in high dimensions.  

  

Figure 4. FORM system reliability solution. The blue area is the linearized version of the domain {𝐹 ∩
𝑍}. Case (a): The FORM solution according to Eq. (25) applies. Case (b): The FORM solution 
according to Eq. (26) applies. (c): as in (b), but with a second linearization point. 

When the FORM results are not expected to be accurate, the joint design point following Eq. 

(20) can nevertheless be used as a basis for dedicated importance sampling methods that can 

work also in higher dimensions, such as line sampling.  

3.2 BUS with Line Sampling  

Line sampling (also called axis parallel importance sampling) is an importance sampling 

technique that is commonly used in structural reliability. The method generates samples at a 

hyperplane in the standard normal space that is orthogonal to a unit vector 𝐚. The vector 𝐚 

represents an important direction, which is chosen such that it points towards the limit state 

surface. Line sampling was introduced in (Hohenbichler and Rackwitz 1988) for obtaining a 

correction factor to FORM estimates of the probability of failure. Therein, the vector 𝐚 was 

taken equal to the unit vector pointing to the design point, i.e. 𝐚 = −𝐮∗/‖𝐮∗‖. The method was 

further developed in (Koutsourelakis et al. 2004), replacing the initial FORM run with a coarse 

Monte Carlo simulation to determine a sampling direction that points to the limit state surface. 

In the context of BUS, the method is applied to estimate the probability integrals in Eq. (17) in 

the (𝑛 + 1)-dimensional standard normal space 𝐔. The integration domain in the numerator in 

Eq. (17) is an intersection of the failure and observation domains. In this case, if a FORM run 

precedes line sampling, the important direction can be evaluated based on the joint design point 

defined in Eq. (18). Having determined the important direction 𝐚, the sampling space is rotated 

and reduced by one dimension through the following transformation: 
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𝐕 = 𝐑𝐔 (27) 

wherein 𝐕 = [𝐕0; 𝑉𝑛], 𝑉𝑛  is the coordinate parallel to the vector 𝐚, 𝐕0  contains the reduced 

space that rests on the hyperplane orthogonal to 𝐚, and 𝐑 is a suitable rotation matrix whose 

(𝑛 + 1)th row is the vector 𝐚. Because of the rotational symmetry of the standard normal 

distribution, the vector 𝐕0  follows the 𝑛 -variate independent standard normal PDF on the 

hyperplane 𝑣𝑛 = 0 . The method proceeds by generating 𝑁  independent samples {𝐯0𝑘, 𝑘 =

1, … , 𝑁} of 𝐕0. For each sample 𝐯0𝑘 a line search is performed to determine the distance 𝑑(𝐯0𝑘) 

from the limit state surface in a direction orthogonal to the hyperplane 𝑣𝑛 = 0, as illustrated in 

Figure 5. In cases where the direction intersects two or more boundaries of the integration 

domain, the distances from each intersection point to the hyperplane need to be computed. The 

contribution of each sample to the probability integral is set equal to the probability that the 

standard normal random variable defined on the coordinate 𝑣𝑛  at 𝐯0𝑘  lies in the integration 

domain. If the sample intersects the limit state surface only once, then the probability of the 

sample is evaluated as 

𝑝𝑘 = Φ(−𝑑(𝐯0𝑘)) (28) 

where Φ is the standard normal CDF. For cases where the sample intersects the limit state 

surface at two points defining the boundaries of the integration domain on the coordinate 𝑣𝑛 at 

𝐯0𝑘, the probability of the sample is obtained as 

𝑝𝑘 = Φ(−𝑑𝑙(𝐯0𝑘)) − Φ(−𝑑𝑢(𝐯0𝑘)) (29) 

where 𝑑𝑙(𝐯0𝑘) is the distance to the lower boundary and 𝑑𝑢(𝐯0𝑘) is the distance to upper 

boundary. The probability integral is then estimated as 

𝑝𝐿𝑆 =
1

𝑁
∑ 𝑝𝑘

𝑁

𝑘=1

 (30) 
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Figure 5. Illustration of the line sampling method.  

3.3 BUS with Subset Simulation 

Subset simulation, originally developed in (Au and Beck 2001), is an adaptive simulation 

method that is particularly efficient in estimating rare events in problems with many random 

variables. The method is based on expressing the probability of a rare event 𝐹 as a product of 

larger conditional probabilities, which are estimated with Markov Chain Monte Carlo (MCMC) 

sampling (Papaioannou et al. 2015). The conditional probabilities are defined in terms of a set 

of nested intermediate failure events 𝐹0 ⊃ 𝐹1 ⊃ ⋯ ⊃ 𝐹𝑀 = 𝐹 , where 𝐹0  denotes the certain 

event. The probability Pr(𝐹) can be expressed as: 

Pr(𝐹) = Pr (⋂ 𝐹𝑖

𝑀

𝑖=1

) = ∏ Pr(𝐹𝑖|𝐹𝑖−1)

𝑀

𝑖=1

 (31) 

The event 𝐹  is defined in the standard normal space as 𝐹 = {𝐺(𝐮) ≤ 0}. The intermediate 

events are defined as 𝐹𝑖 = {𝐺(𝐮) ≤ 𝑏𝑖}, where 𝑏1 > 𝑏2 > ⋯ > 𝑏𝑀 = 0. The values of 𝑏𝑖 are 

chosen adaptively such that the estimates of the conditional probabilities correspond to a chosen 

value 𝑝0, where typically 𝑝0 is chosen as 0.1. This is achieved by simulating 𝑁 samples of 𝐔 

conditional on each intermediate failure event 𝐹𝑖−1. For each sample, the limit-state function 

𝐺(𝐮) is evaluated and the samples are ordered in increasing order of magnitude of the limit-

state function values. The threshold 𝑏𝑖 is set to the 𝑝0-percentile of the ordered samples. The 
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procedure is repeated until the maximum level 𝑀 is reached, for which 𝑏𝑀 = 0. To estimate 𝑏1, 

unconditional samples of 𝐔 are obtained by Monte Carlo sampling. Samples of 𝐔 conditional 

on the events 𝐹𝑖, 𝑖 = 1, … , 𝑀 − 1,  are generated by MCMC sampling, using as seeds the 

samples conditional on 𝐹𝑖−1 for which 𝐺(𝐮) ≤ 𝑏𝑖. The sampling procedure conditional on the 

first intermediate failure domain is illustrated in Figure 6. The probability of the rare event is 

then estimated as: 

𝑝𝑆𝑢𝑆 = 𝑝0
𝑀−1𝑝𝑀 (32) 

where 𝑝𝑀 is the estimate of Pr(𝐹𝑀|𝐹𝑀−1) and is given by  

𝑝𝑀 =
1

𝑁
∑ 𝟏𝐹(𝐮𝑘

𝑀−1)

𝑁

𝑘=1

 (33) 

𝟏𝐹  is the indicator function of the event 𝐹  and {𝐮𝑘
𝑀−1, 𝑘 = 1, … , 𝑁}  are samples of 𝐔 

conditional on 𝐹𝑀−1. 

BUS requires estimation of the probabilities in the numerator and denominator of Eq. (17). The 

probability of the observation Pr(𝑍)  with 𝑍 = {𝐻(𝐮) < 0}  can be estimated with SuS 

following the same procedure with intermediate events 𝑍0 ⊃ 𝑍1 ⊃ ⋯ ⊃ 𝑍𝑀 defined in terms of 

the observation limit state function 𝐻(𝐮). Alternatively, Pr(𝑍) can be estimated following the 

approach proposed in (Betz et al. 2014a) that is based on SuS and additionally estimates the 

constant 𝑐 adaptively. To estimate the probability of the intersection of the observation and 

failure events Pr(𝐹 ∩ 𝑍) we define the joint event 𝐹 ∩ 𝑍 in terms of the equivalent limit state 

function 𝐺̂(𝐮) = max(𝐺(𝐮), 𝐻(𝐮)), where it holds  𝐹 ∩ 𝑍 = {𝐺̂(𝐔) ≤ 0}. Therefore SuS can 

be applied the same way as for evaluation of the probability of the individual events 𝐹 or 𝑍, 

whereby the intermediate events are defined in terms of the limit state function 𝐺̂(𝐮).  

It is noted that the updated probability Pr(𝐹|𝑍)  can also be estimated directly following 

estimation of Pr(𝑍) with a new SuS run. This is the procedure we apply in the applications 

presented later. To this end, we define a set of intermediate events 𝐹0
∗ ⊃ 𝐹1

∗ ⊃ ⋯ ⊃ 𝐹𝑀
∗  with 

𝐹𝑖
∗ = 𝐹𝑖 ∩ 𝑍 and 𝐹0

∗ = 𝐹0 ∩ 𝑍 = 𝑍. The conditional probability can be expressed as 

Pr(𝐹|𝑍) =
Pr(𝐹 ∩ 𝑍)

Pr(𝑍)
=

Pr(⋂ 𝐹𝑖
∗𝑀

𝑖=0 )

Pr(𝑍)
= Pr (⋂ 𝐹𝑖

∗

𝑀

𝑖=1

| 𝐹0
∗) = ∏ Pr(𝐹𝑖

∗|𝐹𝑖−1
∗ )

𝑀

𝑖=1

 (34) 
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Samples conditional on 𝐹0
∗ = 𝑍 are available from the final step in the estimation of Pr(𝑍). The 

intermediate events 𝐹𝑖
∗, 𝑖 = 1, … , 𝑀 − 1 are defined the same way as in standard SuS, and 

samples conditional on 𝐹𝑖
∗, 𝑖 = 1, … , 𝑀 − 1 are obtained by MCMC.  

  

Figure 6. Illustration of the subset simulation method.  

4 Applications 

4.1 Illustrative example in low dimension 

For illustrational purposes, we consider the basic reliability problem: Failure occurs, when the 

load 𝑆 exceeds the capacity 𝑅: 𝐹 = {𝑅 ≤ 𝑆}. The corresponding limit state function defining 

failure as 𝐹 = {𝑔(𝐗) ≤ 0} is 

𝑔(𝐗) = 𝑅 − 𝑆. (35) 

The load 𝑆 is Gumbel (extreme value type 1 maxima) distributed with mean 2 and standard 

deviation 1; the capacity 𝑅 is lognormal distributed with mean 12 and standard deviation 2. 

Both random variables are independent, hence only the marginal transformations 𝑢𝑖 =

Φ−1[𝐹𝑋𝑖
(𝑥𝑖)] are necessary for transforming the reliability problem to the standard normal 

space (U-space) following Eq. (4).   

We consider measurements 𝑟𝑚 of 𝑅 that are subject to an additive measurement error. Such 

measurements can correspond to a quality check of the material after manufacturing. With an 



Rare event BUS  22/37 

unbiased normal distributed additive measurement error 𝜖, the likelihood function describing 

the measurement 𝑟𝑚 is 

𝐿(𝑟) = exp [−
1

2
(

𝑟 − 𝑟𝑚

σϵ
)

2

] (36) 

with σϵ = 1.0 being the standard deviation of the measurement error. The corresponding limit 

state function describing this measurement event 𝑍  is obtained by inserting this likelihood 

function into Eq. (16) or (18). The constant 𝑐 is chosen as 1, corresponding to 1/ sup 𝐿(𝑟). 

We investigate two cases 𝑟𝑚 = 8 and 𝑟𝑚 = 12. The resulting limit state functions in U-space 

are shown in Figure 7. The limit state function for failure 𝐺 is a function only of 𝑈𝑟 and 𝑈𝑠 

(shown in the upper part of Figure 7), whereas the limit state function describing the observation 

𝐻 is a function of 𝑈𝑟 and 𝑈0 (shown in the lower part of Figure 7). The joint design point 𝐮∗ is 

indicated, which is used for the linearization of the limit state functions in the FORM analysis. 

In case of 𝑟𝑚 = 12 , where the measured value is equal to the prior mean, Pr(𝑍)  is 

overestimated by FORM if is linearized solely at its joint design point. This can be avoided by 

adding a second linearization, as illustrated in Figure 7. However, such a situation will only 

arise when the probability of the observation is large. Hence in most applications, these 

probabilities could be calculated with simple MCS.   

The results for the two cases are summarized in Table 1. The FORM results are presented 

together with those from line sampling (LS), subset simulation (SuS), MCS, and the exact 

solution. For each method, the number of forward model evaluations is provided, to indicate 

the required computational efforts. We point out that no deep efforts were made to optimize the 

individual SRM for this application. This applies in particular for FORM, where a standard 

optimization algorithm was used, and for line sampling, where an improved line search 

algorithm may potentially lead to a reduced computational effort.  

For this trivial problem, it is not surprising that FORM performs well and clearly outperforms 

the other methods. When comparing the performance of the sampling methods, one has to 

contrast their accuracy with the number of model calls. The number of samples (and thus the 

number of model evaluations) can always be reduced at the cost of lower accuracy. 

Nevertheless, it can be said here that LS, which is based on FORM, is the most exact sampling 

method among the ones investigated. SuS has a larger variability, and this would still hold if 

the same number of model evaluations as in IS were carried out. MCS is clearly not ideal, in 

particular for 𝑟𝑚 = 8 with a small posterior Pr(𝐹|𝑍), because its performance depends directly 

on the magnitude of Pr(𝐹 ∩ 𝑍).  
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Figure 7. Limit state surfaces of example 1 in standard normal space 𝐺(𝑢) = 0 and 𝐻(𝑢) = 0, 
together with the linear FORM approximations 𝐺′(𝑢) = 0 and 𝐻′(𝑢) = 0. Above: failure limit state 
surface in the 𝑈𝑅 − 𝑈𝑆 plane; below: observation limit state surface in the 𝑈𝑅 − 𝑈0 plane. The 
linearization points are shown as green dots. In case (a), the measurement is away from the prior 
mean, and a linear approximation at the joint design point is sufficient. In case (b), the measurement 
is equal to the prior mean, and two linearization points (at the two local minima) give better accuracy.  
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Table 1. Results of the Bayesian updating. MCS is performed with 107 samples, results are shown as 
95% confidence interval. SuS is performed with 1000 samples at each subset level. LS is performed 
with 1000 line searches. Results in square brackets represent the 95% credible interval. The number 
of model runs are provided for the computation of the denominator 𝑃𝑟(𝑍) plus the computation of the 
numerator 𝑃𝑟(𝐹 ∩ 𝑍). 

Case Method  Pr(𝐹) Pr(𝑍) Pr(𝐹 ∩ 𝑍) Pr(𝐹|𝑍) # model runs [103] 

𝑟𝑚 = 8 FORM 1.68e-5 8.14e-2 1.06e-5 1.30e-4 0.02+0.07 = 0.09 

 SuS [0.7-3.1]e-5 [6.9-10]e-2 [0.28-2.61]e-5 [0.34-3.11]e-4 2.1+4.2 = 6.3 

 LS [1.61-1.62]e-5 [8.24-8.28]e-2 [0.87-0.98]e-5 [1.06-1.18]e-4 7.6+22.7 = 30.3 

 MCS  [1.34-1.84]e-5 [8.24-8.28]e-2 [0.84-1.24]e-5 [1.02-1.50]e-4 104 

 Exact  1.62e-5 8.26e-2 9.3e-6 1.13e-4 - 

𝑟𝑚 = 12 FORM 1.68e-5 0.73 1.4e-6 1.9e-6 0.03+0.06 = 0.09 

 FORM (sys.) 1.68e-5 0.46 1.4e-6 3.0e-6 0.06+0.06 = 0.12 

 SuS [0.7-3.1]e-5 [0.42-0.48] [0.3-4.5]e-6 [0.7-10]e-6 1.5+5.5 = 7.0 

 LS [1.61-1.62]e-5 [0.50-0.53] [1.28-1.52]e-6 [2.6-2.9]e-6 9.8+19.2 = 29.0 

 MCS [1.3-1.8]e-5 0.45 [0.97-2.63]e-6 [2.2-5.8]e-6 104 

 Exact 1.62e-5 0.45 1.4e-6 3.2e-6 - 

  

4.2 Illustrative example in higher dimensions 

To investigate the performance of the algorithms for problems with larger number of input 

random variables, the first example is extended by formulating the capacity 𝑅 as a product of 

𝑅𝑖’s (e.g. component capacities). The limit state function for failure thus reads: 

𝑔(𝐗) = ∏ 𝑅𝑖

𝑛𝑅

𝑖=1

− 𝑆 (37) 

The 𝑅𝑖’s are modelled as lognormal iid random variables, and the distribution parameters of 𝑅𝑖 

are chosen such that this reliability problem reduces to the one of the first example. We consider 

two types of measurements.  

Firstly, a measurement of the product 𝑅 = ∏ 𝑅𝑖
𝑛𝑅
𝑖=1  is considered, with the likelihood function 

of Eq. (36) and 𝑟𝑚 = 8 . This is exactly the same problem as in example 1, hence the 

dimensionality of the problem could be reduced without any approximation. The MCS and the 

SuS solutions are not affected by the increased dimensionality, and the results of example 1 still 
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hold. The interest here is in investigating how the FORM solution is influenced by the (artificial) 

increase of dimensions, by setting 𝑛𝑅 = 100. The obtained FORM results are identical to the 

ones of Example 1, which demonstrates that the method can still work in higher dimensions for 

problems that could be reduced to lower-dimensional problems. Note that the performance of 

many existing algorithms for Bayesian analysis are influenced by such an artificial increase of 

dimensions; e.g. (Betz et al. 2016) show that the performance of the transitional MCMC 

(TMCMC) proposed in (Ching and Chen 2007) deteriorates strongly under such an artificial 

increase in dimensions. 

Secondly, to investigate a real increase in dimensions, individual measurements of the 𝑅𝑖’s are 

considered. The corresponding likelihood function is 

𝐿(𝐫) = exp [−
1

2
∑ (

ln 𝑟𝑖 − ln 𝑟𝑚,𝑖

σϵ
)

2
𝑛𝑅

𝑖=1

] (38) 

wherein σϵ = 0.05  and 𝑟𝑚,𝑖 = 81/𝑛𝑅 . This likelihood function describes multiplicative 

lognormal measurement errors. This choice is made because it leads to an analytical solution 

for the posterior distribution of the 𝑅𝑖’s, which facilitates calculating a reference solution.  

The analysis is performed for 𝑛𝑅 = 10 and 𝑛𝑅 = 100. The results are summarized in Table 2. 

The FORM results of both the numerator Pr(𝐹 ∩ 𝑍) and the denominator Pr(𝑍) are off by 

multiple orders of magnitude. However, the relative error made is approximately the same for 

both terms, so that the conditional probability is estimated rather accurately. The reason for this 

is that the shape of 𝐻(𝐮) = 0 is similar around the two points utilized for linearizing 𝐻(𝐮) in 

the computations of Pr(𝐹 ∩ 𝑍) and Pr(𝑍), and 𝐺(𝐮) is only weakly non-linear. This behavior 

can be found in quite many problems, however, it is typically difficult to know whether or not 

it holds in a particular case. Therefore, a line sampling analysis should ideally be added to the 

FORM.  

Line sampling provides accurate results for 𝑛𝑅 = 10, but less so for 𝑛𝑅 = 100, if the constant 

𝑐 = 1 is used. However, the LS results strongly improve if 𝑐 = 10−2 is used, as evident from  

Table 2. With this modified value of 𝑐, a very good accuracy is achieved for all investigated 

𝑛𝑅. This is explained with the change of the shape of the limit state surface as 𝑐 is descreased. 

The accuracy remains good for any other investigated value of 𝑐 < 10−1. It is noted that the 

FORM results also changes with 𝑐, but this change is only minor, in the order of 10% of the 

final result. 
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Finally, the performance of MCS and SuS is not affected by the increase of dimensions. Overall, 

FORM in combination with line sampling seems to be a good choice for this problem, but SuS 

leads to a comparable trade-off between accuracy and number of model evaluations, with the 

advantage of being more robust (unlike for LS, the optimal value of 𝑐 is known).  

 

Table 2. Results of the Bayesian updating. MCS is performed with 107 samples. SuS is performed with 
1000 samples at each subset level. LS with 1000 line searches. Results in square brackets represent 
the 95% credible interval. The number of model runs are provided for the computation of the 
denominator 𝑃𝑟(𝑍) plus the computation of the numerator 𝑃𝑟(𝐹 ∩ 𝑍). 

Case Method  Pr(𝐹) Pr(𝑍) Pr(𝐹 ∩ 𝑍) Pr(𝐹|𝑍) # model runs [103] 

𝑛𝑅 = 10 FORM 1.68e-5 0.15 1.22e-5 8.0e-5 0.06+0.11 = 0.17 

 SuS [0.7-3.1]e-5 [4.3-7.5]e-3 [0.3-21]e-7 [2.1-35]e-5 3.2+4.5 = 7.7 

 LS (𝑐 = 1) [1.61-1.62]e-5 [4.7-6.7]e-3 [1.9-6.4]e-7 [3.1-12]e-5 14+18= 32 

 LS (𝑐 = 10−2) [1.61-1.62]e-5 [5.0-6.4]e-5 [2.9-5.1]e-9 [5.0-9.2]e-5 6.3+13.9 = 20.2 

 MCS [1.4-1.9]e-5 [5.7-5.8]e-3 [0-6.7]e-7 [0-11.5]e-5 104 

 Exact 1.62e-5   6.8e-5 

𝑛𝑅 = 100 FORM 1.68e-5 0.71 1.65e-5 2.33e-5 0.5+1.9 = 2.4 

 SuS [0.7-3.1]e-5 [3.2-5.5]e-3  [0.07-5.1]e-7 [0.2-12]e-5 3.4+5.0= 8.4 

 LS (𝑐 = 1) [1.61-1.62]e-5 [3.1-5.5]e-3 [0-1.1]e-6 [0-25]e-5 7.0+10.0= 17.0 

 LS (𝑐 = 10−2) [1.61-1.62]e-5  [4.0-4.4]e-5 [0.7-1.1]e-9 [1.6-2.6]e-5  5.0+13.8=18.8 

 MCS [1.4-1.9]e-5 [4.2-4.3]e-3 [0.025-3.7]e-7 [0.06-8.6]e-5 104 

 Exact 1.62e-5   2.1e-5   

  

4.3 Diffusion problem 

We consider a 1D steady state diffusion problem. It is described by the following diffusion 

equation on the unit interval 𝐷 = [0,1]: 

𝑑

𝑑𝑥
(𝑎(𝑥)

𝑑𝑢

𝑑𝑥
) + 𝑏(𝑥) = 0 (39) 

with random diffusivity 𝑎(𝑥).  
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We distinguish two situations: (a) is related to the measurements, and (b) is related to the 

potential rare event of interest. In situation (a), the diffusivity 𝑎(𝑥)  is inferred from 

measurements of the field 𝑢(𝑥)  at a specified number of locations, performed during a 

controlled experiment. This inverse problem could be considered a prototype of the estimation 

of the hydraulic conductivity of an aquifer from pumping tests. The source term that models 

the applied pumping rate is given as: 

𝑏(𝑥) = ∑
𝑠𝑖

√2𝜋𝜎𝑖

exp (−
(𝑙𝑖 − 𝑥)2

2𝜎𝑖
2 )

𝑁

𝑖=1

 (40) 

The above involves 𝑁  localized sources (pumped wells), each centered at location 𝑙𝑖 , with 

strength 𝑠𝑖 and width 𝜎𝑖. The boundary conditions are set to zero (𝑢(0) = 𝑢(1) = 0) at both 

boundaries. This prototype inverse problem is the steady state version of the inverse problem 

investigated in (Marzouk and Najm 2009). We consider three sources at locations 𝑙1 = 0.25, 

𝑙2 = 0.5 and 𝑙3 = 0.75 with identical strengths 𝑠𝑖 = 10 and widths 𝜎𝑖
2 = 10−3. The sensors 

that measure the field 𝑢 are uniformly spaced on 𝐷, excluding the endpoints. We use 𝑚 = 11 

sensors.  

In situation (b), the domain 𝐷 is subjected to a flow from left to right. That is, the source term 

is zero (𝑏(𝑥) = 0) and the boundary conditions are set to inflow at the left boundary (𝑢(0) =

1) and outflow at the right boundary (𝑢(1) = 0). The flow rate is evaluated through 

𝑞(𝑥) = −𝑎(𝑥)
𝑑𝑢

𝑑𝑥
 (41) 

The diffusion equation is solved with linear finite elements on a uniform grid with spacing ℎ =

1/48. The event of interest is defined as the flow rate at the right boundary 𝑞(1) exceeding a 

prescribed threshold 𝑞𝑡 = 1.3. The corresponding limit state function is 𝑔(𝑎) = 𝑞𝑡 − 𝑞(1). 

We model the prior of the log-diffusivity ln 𝑎(𝑥) with a Gaussian random field with mean 

𝜇ln 𝑎 = 0.1 , standard deviation 𝜎ln 𝑎 = 0.2  and autocorrelation coefficient function 

𝜌ln 𝑎(Δ𝑥) = exp (− ∆𝑥 𝜆⁄ ) with 𝜆 = 0.3. To represent the random field ln 𝑎(𝑥), we apply its 

Karhunen–Loève expansion (Ghanem and Spanos 1991) which takes the following form 

ln 𝑎(𝑥) = 𝜇ln 𝑎 + 𝜎ln 𝑎 ∑ √𝜃𝑖𝜒𝑖(𝑥)𝑈𝑖

𝑛

𝑖=1

 (42) 

where {𝜃𝑖 , 𝜒𝑖}  are the eigenpairs of 𝜌ln 𝑎 , which are know analytically for the applied 

exponential correlation model (Ghanem and Spanos 1991), and 𝑈𝑖, 𝑖 = 1, … , 𝑛, are independent 
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standard normal random variables. The expansion is truncated after 10 terms, i.e. 𝑛 = 10. We 

employ this discrete representation of the log-diffusivity and hence learn the random variables 

𝑈𝑖, 𝑖 = 1, … , 𝑛, in situation (a). The same random variables are used to define the failure event 

in situation (b). 

To construct the measurements in (a), we employ a target profile that is randomly sampled from 

the prior distribution of ln 𝑎(𝑥), through drawing a sample from the prior distribution of the 

𝑈𝑖’s. Using the generated target profile, we solve the forward model to evaluate the values of 

𝑢 at the sensor locations and apply an additive Gaussian noise with standard deviation 𝜎𝜖 = 0.1 

to simulate measured values 𝑢𝑚,𝑖. The corresponding likelihood function reads: 

𝐿(𝑎) = exp [−
1

2
∑ (

𝑢𝑖(𝑎) − 𝑢𝑚,𝑖

𝜎𝜖
)

2𝑚

𝑖=1

] (43) 

where the 𝑢𝑖(𝑎) denote the solution of the diffusion equation for a realization of the diffusivity 

𝑎 at the sensor locations. The limit state function that describes the measurement event, denoted 

𝑍, is obtained by substituting the likelihood function in Eq. (16). It is noted that the random 

variables in the Karhunen–Loève expansion are already standard normal; therefore there is no 

need for a transformation of the random variable space. The constant 𝑐 is selected such that it 

holds 𝑐 < [sup 𝐿(𝑎)]−1 with a probability 0.05 (see Annex A in Straub and Papaioannou 2015). 

When using BUS with SuS to estimate Pr(𝑍), samples of the posterior distribution are obtained 

as a by-product of the reliability evaluation. The posterior statistics of the log-diffusivity are 

summarized in Figure 8. Therein, the posterior median and 95% credible interval obtained from 

the posterior samples are depicted. It is shown that the Bayesian inversion identifies accurately 

true profile of the log-diffusivity.  

  

Figure 8. Posterior median and 95% credible interval of the log-diffusivity profile computed with BUS 
and SuS with 1000 samples per level.   
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The results of the reliability analysis in situation (b) are shown in Table 3. Comparing the 

credible bounds of the LS and SuS, it is shown that LS exhibits much smaller bounds than SuS. 

The bounds of SuS for the posterior probability are notably large. This is because the shape of 

the observation domain becomes narrow when a large number of measurements is included, 

which influences the performance of the MCMC algorithm within SuS. In particular, the shape 

of the observation region favors clustering of the MCMC samples around the seeds of the chains 

at advanced subset levels. LS performs significantly better, although the variability of the 

simulation outcomes for Pr(𝐹 ∩ 𝑍) is still considerably high, which is attributed to the small 

size of the intersection of the observation and failure domains. The mean estimate of LS for 

Pr(𝐹)  is 6.7e-2, for Pr(𝑍)  3.65e-6, for Pr(𝐹 ∩ 𝑍)  4.35e-9 and for Pr(𝐹|𝑍)  1.24e-3. 

Comparing these values with the FORM results, we see that although the FORM estimates for 

Pr(𝑍)  and Pr(𝐹)  differ considerably, the difference is much smaller for Pr(𝐹|𝑍) . This is 

because the relative errors for Pr(𝑍) and Pr(𝐹 ∩ 𝑍) are approximately the same, and hence 

cancel out in the estimation of Pr(𝐹|𝑍). The FORM estimate of the prior probability Pr(𝐹) is 

slightly larger compared to the mean LS estimate which indicates that the failure surface is 

nonlinear around the design point and suggests a convex shape of the failure region.     

Table 3. Results of the Bayesian updating. SuS is performed with 1000 samples at each subset level. 
LS is performed with 1000 line searches. Results in square brackets represent the 95% credible 
interval from repeated simulation runs. The number of model runs are provided for the computation of 
the denominator 𝑃𝑟(𝑍) plus the computation of the numerator 𝑃𝑟(𝐹 ∩ 𝑍). 

Method  Pr(𝐹) Pr(𝑍) Pr(𝐹 ∩ 𝑍) Pr(𝐹|𝑍) # model runs [103] 

FORM 8.01e-2 2.9e-4 1.6e-7 5.6e-4 0.15+0.17=0.32 

SuS [5.4-8.5]e-2 [0.3-17.0]e-6 [0.0011-26.0]e-9 [0.0069-58.2]e-4  5.6+4=9.6 

LS [6.64-6.75]e-2 [2.2-5.5]e-6 [1.4-9.3]e-9 [4.0-26.5]e-4 9.4+10=19.4 

 

4.4 Foundation stability 

As final example, we consider a problem from geotechnical engineering, related to the stability 

of a foundation. The foundation has a width of 1.5m; after construction it is loaded eccentrically 

with load P, where the lever arm is 0.5m and P follows a Gumbel distribution with mean 1MN 

and 10% coefficient of variation. At an intermediate construction stage a centric load F of 

0.4MN is applied; the displacements at the left and right ending of the foundation are measured 

as 𝑥̂𝑙 = 1cm and 𝑥̂𝑟 = 1.5cm , see Figure 9.  
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The additive measurement/modelling error is assumed to follow a normal distribution with zero 

mean and a standard deviation of 𝜎𝜀 = 0.5cm ; the two errors are correlated with a correlation 

coefficient of 𝜌 = 0.9  (thus, it is implicitly assumed that modelling errors are dominating 

compared to measurement errors).  

Serviceability of the foundation is ensured if the inclination of the foundation under the final 

loading P is smaller than 4 degrees; i.e. the failure event corresponds to this angle being 

exceeded: 𝑔(𝐱) = 4° − 𝛼(𝐱). 

   

Figure 9. Loading of the foundation (a) during the measurements and (b) in the final state.  

The soil is modelled as linear elastic, with a Young’s modulus E that is a spatial random field 

and a fixed Poisson ratio of 0.35. E is modeled as Log-Normal random field with a mean of 

40MPa and a coefficient of variation of 50%. The correlation coefficient function between 

points 𝐱 and 𝐱′ of the underlying Gaussian random field is 𝜌𝐱,𝐱′ = exp (− ∆𝑥 𝑙𝑥⁄ − ∆𝑦 𝑙𝑦⁄ ), 

where ∆𝑥, ∆𝑦 is the horizontal distance between points 𝐱 and 𝐱′, respectively, and 𝑙𝑥 = 20m, 

𝑙𝑦 = 5m are the correlation lengths in horizontal and vertical directions. The depth of the soil 

layer is 8m, followed by a sandstone layer whose influence on the analysis is negligible. On 

each side of the foundation, a soil-stripe of 15m is modeled explicitly. The mechanical model 

as well as the random field model is discretized and solved by means of higher-order finite 

elements (Szabó et al. 2004). The finite element mesh is depicted in Figure 10. A finite-element 

discretization of the Karhunen-Loeve expansion with 100 terms is used to represent the random 

field (Betz et al. 2014b). The order of the shape functions of the mechanical model is 4, the 

order of the shape functions used to represent the random field is 8.  

The results of the analysis are listed in Table 4. The FORM results match well with the results 

of the other investigated methods. To enable a direct comparison of LS with SuS, the former is 
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run additionally with 160 line samples, which results in approximately the same number of 

model evaluations as required for SuS. This comparison show that the performance of LS is 

superior to SuS in this example.  

   

Figure 10. Finite element mesh used to discretize the soil: the order of the shape functions of the 
mechanical model is 4, the order of the shape functions used to represent the random field is 8.  

 

Table 4. Results of the Bayesian updating. MCS is performed once with approximately 106 samples, 
results are shown as 95% credible interval. SuS is repeatedly performed with 1000 samples at each 
subset level, results are shown as 95% credible interval. LS is performed repeatedly with either 1000 
or 160 line searches each run. The number of model runs are provided for the computation of the 
denominator 𝑃𝑟(𝑍) plus the computation of the numerator 𝑃𝑟(𝐹 ∩ 𝑍). 

Method  Pr(𝐹) Pr(𝑍) Pr(𝐹 ∩ 𝑍) Pr(𝐹|𝑍) # model runs [103] 

FORM 1.4e-2 9.9e-2 2.8e-5 2.8e-4 1.5+1.1 = 2.6 

SuS [1.2-2.1]e-2 [5.4-8.1]e-2 [0.6-5.5]e-5 [0.9-8.5]e-4 2.2+3.7 = 5.9 

LS (1000) [1.55-1.58]e-2 [6.4-6.8]e-2 [1.7-2.4]e-5 [2.7-3.5]e-4 7.1+30.1 = 37.2 

LS (160) [1.54-1.60]e-2 [6.1-7.1]e-2 [1.4-3.0]e-5 [2.2-4.4]e-4 0.9+4.8 = 5.7 

MCS [1.5-1.6]e-2 [6.5-6.6]e-2 [1.1-2.7]e-5 [1.7-4.1]e-4 1000 

 

5 Concluding remarks 

The BUS approach presented in this paper establishes an analogy between Bayesian analysis 

and rare event probability estimation. Thereby, the likelihood function describing the data is 

transformed into an equivalent (rare) event 𝑍. In doing so, the BUS approach enables methods 
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developed for estimating rare event probabilities to be applied to Bayesian analysis, with some 

modifications. As we show in this paper, this is effective when performing Bayesian updating 

of rare event probabilities. Such applications are of (growing) relevance in the assessment of 

technological and anthropogenic systems, where monitoring strategies are increasingly used to 

ensure sufficient reliability, but is relevant also in many other fields of engineering and science. 

As we show, the equivalent observation event 𝑍 of the BUS approach has some similarities to 

the rejection criterion used in ABC. However, unlike the latter, BUS does not require to solve 

an approximate problem.  

The computational efficiency of the BUS framework is a function of the structural reliability 

methods (SRM) used to compute the rare event probabilities Pr(𝑍) and Pr(𝐹 ∩ 𝑍). In this 

paper we have demonstrated and investigated three SRM: FORM, line sampling (LS) and subset 

simulation (SuS). Their efficiency, as expressed by the number of model evaluations and the 

95% credible interval of the resulting posterior failure probability, has been assessed through a 

set of numerical examples.  However, it is not the goal of this paper to make ultimate statements 

about the efficiency of the individual SRM. The methods used here can potentially be further 

optimized to give the same accuracy with fewer model evaluations (in particular LS). 

Nevertheless, the efficiencies reported are in the same order of magnitude as could be achieved 

with optimized algorithms and thus do allow one to draw some conclusions. 

The performance of the three investigated SRM vary among the investigated examples. 

Surprisingly, the FORM result for the posterior failure probability Pr(𝐹|𝑍) is fairly accurate in 

all investigated cases, because the relative errors made in the approximations of Pr(𝑍) and 

Pr(𝐹 ∩ 𝑍) are similar. While the latter terms individually are overestimated by a factor of up 

to 100, the relative error in estimating Pr(𝐹|𝑍) is in the order of 0.1 to 0.2 for most examples, 

and in the order of 1 in the worst case (the diffusion example). However, it is clear that one 

should not rely on FORM results alone without having a good understanding of the shape of 

the linearized domains, which is difficult to achieve in higher dimensions. For this reason, 

FORM results should be verified with an alternative method. LS based on the FORM design 

point is an option in these cases. In the numerical investigations presented here (and in others 

not presented), LS has consistently given accurate results, as long as the value of the constant 

𝑐, necessary for defining the observation event 𝑍, is chosen sufficiently small. However, LS 

will not perform as good if the FORM algorithm does not find the correct design point.  

The optimization problem of finding the FORM design point cannot always be solved, in 

particular when the number of random variables is large. In these cases, BUS can only be 

implemented with SRM that do not rely on the design point. In this paper, we have considered 
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SuS as an effective method of this class. In some of the numerical applications, its efficiency 

was comparable to LS, in some it was lower. Nevertheless, its accuracy is acceptable for many 

applications, and it can be improved simply by increasing the number of samples.  

The strength of the BUS approach is that it leaves open the possibility for applying many of the 

other SRM. In particular, alternative importance sampling techniques available for analyzing 

rare events may outperform the methods presented here in certain applications. It is left to future 

research to investigate these. However, in many instances, the choice of a particular method is 

as much guided by the preferences of the analyst than by some objective efficiency criteria. We 

believe that one should be pragmatic in this regard and use “whatever works”, as long as the 

necessary accuracy can be achieved.  

We have not included a direct comparison of BUS with existing methods for Bayesian analysis 

of rare events, which are based on first approximating the posterior PDF and then solving the 

reliability problem. Our results indicate that BUS can be more efficient, but to provide a fair 

comparison is difficult. On the one hand, the efficiency of the BUS approach is a function of 

the SRM method used, and the optimal SRM is problem-dependent and only a subset of them 

has been considered here. On the other hand, the efficiency of alternative methods depend 

strongly on their specific implementation.  

In our view, the main advantage of BUS over existing methods is the flexibility it provides by 

drawing upon a large set of SRM, which can be selected problem specific. In contrast to existing 

approaches, the BUS approach allows to work entirely in standard normal space, which enables 

or simplifies the use of many SRM, including SuS. In this context it is interesting to note that 

also TMCMC, which is used to generate samples from the posterior PDF in the alternative 

approach presented by (Jensen et al. 2013, Hadjidoukas et al. 2015), can potentially be 

improved by working in standard normal space, as we show in (Betz et al. 2016). 

The application examples investigated in this paper are simplified yet representative of real 

applications, which demonstrate that the method as-is can be used for actual problems in 

practice. In problems where FORM and related methods are suitable for computing the 

unconditional Pr(𝐹), the BUS method in conjunction with the presented SRM will likely be 

suitable for computing the conditional Pr(𝐹|𝑍) . As discussed in (Rackwitz 2001), the 

performance of FORM is surprisingly good for many non-linear problems in lower dimensions, 

and line sampling can correct errors in higher dimensions. However, it is clear that for highly 

non-linear system behavior, the methods as implemented in this paper may not perform well, 

and one should carefully analyze the results in these cases.  



Rare event BUS  34/37 

Finally, when model input uncertainties are described by non-informative prior distributions, 

the BUS approach is not effective. However, in most real physical systems, one does have prior 

information on the input parameters. If one does not, it is still possible to use some of the data 

to determine a prior distribution through an alternative method, and then include the rest of the 

data through BUS. In analogy to the use of non-informative priors, the BUS approach will have 

difficulties when the likelihood function is highly peaked relative to the prior distribution. When 

this leads to a posterior distribution that lies on a lower-dimensional manifold, the SRM 

described in this paper to be used within BUS will not be effective or might fail entirely. It 

remains to be investigated if other methods can be used within the BUS approach in such cases. 

In conclusion, the BUS approach enables the use of existing methods for rare event probability 

estimation for Bayesian analysis. As we demonstrate through numerical examples, the approach 

works well for a variety of practically relevant situations. Nevertheless, there is significant 

potential for further developing and enhancing methods for estimating the rare event 

probabilities within BUS.    
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