

MAATSCHAPPIJ SURINAME N.V. state oil company suriname n.v.

212

Complet

Environmental Study

Phase I

Suriname Refinery Project

Tout Lui Faut

Lummus Crest B.V.

SSR PROJ.

OCT 1 7 1989

SUBJ

ENVIRONMENTAL STUDY

PHASE I

SURINAME REFINERY PROJECT

TOUT LUI FAUT

Revision 2 September 12, 1989

	INDEX	Page
1.	INTRODUCTION	4
2.	GASEOUS EFFLUENT	б
2.1 2.2 2.3 2.4	General Survey of Standards of Immission Levels Survey of standards of Emission Levels Recommendations	6 6 9 11
3.	WATER EFFLUENT	12
3.1 3.2 3.3 3.4	General Survey of Water Quality Standards Survey of Water Effluent Limitation Recommendations	12 13 14 15
4.	SOLID EFFLUENT	16
5	NOISE	17
б.	RECOMMENDED ENVIRONMENTAL DESIGN CRITERIA	19

INDEX (Cont'd)

APPENDICES:

- Immission Standards 1.
- 2. Reactions in Air
- 3. MAC Values and Odor Threshold Values of Various Compounds
 - 4 . Emission Standards
 - Emission Categories of Organic Compounds 5 🖓
 - б.
 - Emission Factors SO Quality Standards for Water to be used for Drinking 7. Water
 - Dutch Quality Standards for Fish water 8.
 - EC Standards for Drinking Water 9.
 - Typical Effluent Limitations 10.
 - 11. Typical Sound Levels
 - Recommended Environmental Design Criteria 12.

Ł

0-6406 Page 4

INTRODUCTION

1.

One of the most important considerations during the realization of a modern plant project is the impact of the plant on the environment. In the past the impact of human activities has been such that air, water and ground pollution have become serious enough that national and international regulations have been set up to protect human beings, animals, plants as well as total ecosystems against unwanted effects. These regulations have been set up by local authorities, national governments and international organizations such as EC or World Bank.

As there are currently no petroleum refining environmental design regulations in Suriname, Lummus Crest B.V. was requested by "Staatsolie" to establish suitable environmental design recommendations. A survey is made of the different standards for allowable environmental immission levels dealing directly with health or environmental effects and the emission levels, which are of direct concern for petroleum refining activities.

National and international codes and standards generally cover the minimum requirements to meet the following principles:

- Stand still, which means no further deterioration of the environment.
- Use of technologies, which are available and economically feasible.

Since so-called "end of pipeline" treatment methods generally mean extra costs and some governmental regulations imply taxes raised on basis of polluting materials, the following principles of environmental control are also met:

- Minimizing the quantities of produced waste by changes in the process instead of treating afterwards.
- Prevention of unnecessary pollution.

Most regulations are dealing with gaseous and water effluents, since these have a direct and visible effect on the environment. The survey included regulations of the following countries/ organizations:

- World Bank.
- usa (EPA).
- EC.
- Germany (TA Luft).
- The Netherlands.

These regulations are often related to each other, althouch not always given in the same units.

For comparison, the environmental regulations of two other countries, India and Saudi Arabia, working on their basic industrial development have been added.

2. GASEOUS EFFLUENT

2.1 GENERAL

The main sources are the following:

- Flue gas due to combustion of fossil fuels. Fossil a. fuels include coal, oil and its derivatives and natural gas. Main combustion products contributing to air pollution are sulfur oxides, nitric oxide, carbon monoxide and particles, the first two responsible for the formation of acid rain. The emission of the last two products is limited primarily to protect human health.
- Flare gas originating from emergency venting. The flare b. system should be used for safety only and must never be used as an incinerator. Since flaring often results in incomplete combustion, flare gases may also contain apart from the combustion products mentioned under a., unburned hydrocarbons or H₂S.
- Venting, either controlled or diffuse. Although conс. trolled venting of noxious products should be avoided as much as possible, they still may occur. Uncontrolled diffuse venting originates from the following or sources:
 - Leaking flanges, valves and safety valves.
 - Breathing of storage tanks and vapor displacement during filling.
 - Vapor losses during loading and unloading of products.

A limited amount of particulates emissions arises from furnaces and steam boiler firing plants, from waste incineration, from catalytic cracking working in accordance with the fluidized bed system and during the treatment of coke.

2.2

SURVEY OF STANDARDS OF IMMISSION LEVELS

Appendix 1 shows the maximum immision levels provided by various organizations of the main polluting substances in the atmosphere.

Sulfur dioxide is considered to be dangerous to men. It also oxidizes in the atmosphere forming sulfur trioxide, which combines with moisture to form sulfuric acid. High levels of sulfate concentrations will aggravate asthma and long and heart disease. It also contributes to the formation of acid rain and can affect plants and trees. Low levels of sulfur dioxide in combination with ozone and nitrogen oxide can severely damage the vegetation.

Immission levels are standards which apply to the ambient air quality. US standards, EC, German and Dutch standards give two levels which are to be adhered to. The first (the highest) level represents air quality which has to be maintained for human health reasons, while the second level is to be strived after for environmental reasons. The leve are given as concentrations in the ambient air in ug/m. The absolute figures represent averages of the measured values over a year and a day respectively.

In The Netherlands, some values are given in 98 percentile, which means 98 percent of the measured 24 hours average values is lower than the indicated value. This means that the yearly average will be lower, while the maximum 24-hour average will be higher than this value. For example for SO₂ the 98 percentile is 250 μ g/m³, the maximum 24-hour average is 500 μ g/m³. Compared with EC values, this corresponds to a yearly average of 140 μ g/m³.

Nitrogen oxide is present in the atmosphere from natural as well as from men-made sources. Nitrogen oxides produced by men originate from transportation means and stationery combustion sources, proportions of which are variable for different countries.

However, generally 50% originates from industrial combution. Nitrogen oxides take part in the reactions which take place in the atmosphere. Appendix 2 shows the various reactions which are occurring. Also unburned hydrocarbons car react with nitrogen oxides resulting in photochemical oxidants. Ozone is another photochemical oxidant. Highly oxidized nitrates form components in so-called photochemical smog, which irritates the eyes, longs and aggravates respiratory diseases. Nitrogen oxides are also toxic to vegetation. They can be further oxidized to nitrogen pentoxides which combine with moisture to from nitric acid, thus contributing to the formation of acid rain.

SSR - PHASE I EVVP RECHECKED DOCUMENT COMMENTS: BY 24/6/91

Immission standards for carbon monoxide are primarily meant to protect human health. CO reacts with hemoglobine (oxygen carrier in blood) causing lack of oxygen and possibly asphyxiation. As smokers are exposed to relatively high concentration of CO, this air quality standard mainly applies to nonsmokers.

Particles means all inhalable particulates present in air. However, the EC standards apply only to dark colored particles, due to the agreed analyzing method as pointed out by the OESO, which is based on the concentration of black particles in the ambient air (black smoke). Particles suspended in the atmosphere have sizes between 0.1 μ m and 500 μ m. However, particles of 0.2 μ m and smaller are exhaled as readily as they are inhaled. Particulates add up to smog formation and can produce allergic reactions, respiratory effects and skin and eye irritation.

For other materials no immission values are given, which have a legal status, except for some heavy metals and chlorine compounds in the German standard and lead in the EC and Dutch standards.

In The Netherlands preliminary limit values have been set up for several compounds based on their MAC values and a certain safety factor. These compounds have been categorized after their toxicity and persistence for the environment. The MAC value represents the maximum allowable concentration to which a normal healthy human being is allowed to be exposed during 8 hours a day and not longer than 40 hours a week.

For compounds, for which no ambient air value has been established yet, the following limits are used:

	Category	1 :	0.001	x MAC	value.
117-21					-

- Category 2 : 0.01 x MAC value.
- Categories 3 and 4 : 0.03 x MAC value.

These values are used, unless the threshold value for odor is lower than the MAC value. In that case the immission limit is $0.3 \times this$ value.

H	Category	1	1	Toxic and persistent for the environment.
# # #	Category Category Category	3		Toxic, but not persistent. Hardly toxic nor persistent. Other.

WP896193/8

A list of compounds is given in appendix 3, indicating category, MAC value, odor threshold values and immission limits.

2.3 SURVEY OF STANDARDS OF EMISSION LEVELS

Appendix 4 shows emission standards provided by various organizations. These limitations are generally applicable for source emissions and are based on:

- Values, which can be achieved by the available technology and which are necessary and economically feasible.
- Values, leading to the realization of the immission values mentioned in the previous paragraph.

The measures taken to limit the emissions are to be based on a limitation of the concentration values in the discharged stream on one side, as well as on a limitation of the total mass flow leaving an installation on the other side. The emission values indicate the allowable concentrations of the contaminant at the point of discharge, before any mixing takes place with air.

Emission of sulfur dioxide is directly depending on the sulfur content of the fuel and therefore mainly applies to fossil fuel burning facilities like coal and oil and H_2^S containing fuel gas.

Provisions to decrease SO₂ emission may consist of flue gas cleaning, mainly applied to coal and oil combustion or fuel desulfurization (oil and gas) by conversion to H_2S by catalytic hydrogenation and subsequent removal of H_2S .

Emission of nitrogen oxides by combustion processes is due to oxidation of atmospheric nitrogen in the combustion air ("thermal NO_x") or conversion of nitrogen present in the fuel ("fuel NO_x").

Reduction of NO, in flue gases can be achieved by changes in the operating conditions like reduced excess air or changes in the fuel properties like reduction of "N" content, which is not practical or use of low caloric gases thus reducing the flame temperature.

However, more common reduction techniques consist of the use of low NO burners, air staged or fuel staged burners. In these burners air or fuel is added in two or three stages, such that formed NO, is reduced to N₂ in a fuel rich environment. A third type is a burner with internal circulation of flue gases. Other techniques, only applicable to new furnaces, reduce the emission of NO by changes in the fire zone. Flame temperatures can be lowered by increasing the distances between the burners. Air staging in the firing zone can be achieved by injecting combustion air outside the combustion zone. Fuel staging in the firing zone is another modern technique, at which combustion takes place in three consecutive firing zones. A third technique recycles the flue gas externally by means of an external flue gas blower.

MON

The emission of particulates from boilers and process heaters is largely a function of the fuel used. In case of coal burning, it highly depends on the ash content, which will appear as fly ash in the flue gases. When burning oil, smoke can be created due to improper combustion.

In this case smoke formation can be suppressed by a higher excess air quantity, although this is in contradiction with the requirements for low NO_x. Particulates removal can be achieved by means of cyclones or electrostatic precipitators.

These are the main substances responsible for air pollution, for which emission standards are provided. Some standards (EPA, Saudian standards) prescribe the use of floating roofs on storage tanks for hydrocarbons having a vapor pressure at ambient temperature of more than 0.1 bara or a vapor recovery system for hydrocarbons with a vapor pressure higher than 0.75 bara.

The German standards (TA Luft) have divided a number of organic compounds into three categories. For each category the emission is limited to values shown below:

Category No.	Mass	Flow	Concentration
I	0.1	kg/h	20 mg/m ³
II	2	kg/h	100 mg/m ³
III	3	kg/h	150 mg/m

Organic compounds, for which these values apply are listed in appendix 5.

The same approach has been followed for carcinogenic compounds, solid inorganic compounds and inorganic vapors, making the TA Luft a very complete standard for emissions.

2.4

RECOMMENDATIONS

In general, standards as provided by the World Bank are recommended, unless there is no standard given or the World Bank standard is not comparable to the others or not realistic in LCV's opinion.

As far as the immission values for the common flue gas pollutants are concerned, World Bank standards are recommended to be adopted. For CO, the German standard is recommended. The values for SO, and particulates are given as yearly and daily averages not to be exceeded. NO, and CO are only provided as yearly averages. Only Dutch standards provide daily, respectively 8 hours average, but then as a 98 percentile, which is not directly comparable. For other compounds, the approach based on MAC values is recommended, as applied in The Netherlands and described in paragraph 2.2.

The emission standards, set by the World Bank for NO, and particulates fall in the same range as the other standards and are therefore recommended. The SO, standard, however, is extremely high and not recommended for fuel oil firing. The World Bank standard is considered unrealistic for refinery type plants. Appendix 6 shows emission factors of refineries between 1975 and 1981 in g/GJ. This table shows a significant decrease in SO₂ emission, the values in the last years corresponding to the Saudian standard of 1 g/MJ. This value is therefore recommended as a guideline.

3. WATER EFFLUENT

3.1 GENERAL

The main sources of industrial waste water are:

a. Process Waste Water

In a refinery the principal source of process waste water consists of water extracted during the desalting of the crude. This water contains mainly salts and hydrocarbons. Other sources are settled water in the crude tanks, sour water from stripping processes containing dissolved gasses as H_2S and NH_3 and ballast water from ships.

b. Rainwater

This water is generally divided in clean water and oily water, depending on the area where it is collected. Water from bunded tank areas can be clean or oil contaminated. The same applies to firewater spilled during a fire.

c. Cooling Water

In case of once through cooling water system, the main pollutant is temperature increase of the receiving water. Also, in case of leakage, this water may be contaminated with oil. Finally, when chlorination is applied to prevent algae growth, the water can contain chlorine. In case of closed cooling water system, the discharged quantity is greatly reduced, but may contain hazardous chemicals used for water conditioning.

d. Boiler Blowdown

This is only a small quantity with a relatively high temperature (after cooling). This effluent too may contain hazardous chemicals used for boiler feedwater conditioning.

e. Domestic Waste Water

Originating from offices, laboratory or wherever people are working. This water contains normal biodegradable pollutants as BOD and N-Kjehldahl.

SURVEY OF WATER QUALITY STANDARDS

Water quality standards are based either on the protection of the ecological environment or more specifically when it is used for human consumption. The EC has given guidelines for water quality standards to be set for water indicated as fish water or water to be used for drinking water after treatment. In The Netherlands these guidelines have been used to specify the water quality for the various destinations. Appendix 7 gives quality standards for water to be used for drinking water and appendix 8 for fish water as applied in The Netherlands. Although the designation fish water could also be considered as intended for human consumption, it also contains ecological elements. Wat qualities for the preparation of drinking water are divide. in thee categories:

Category No. Treatment

ISimple treatment and disinfection.IINormal physical and chemical treatment
and disinfection.IIIExtensive physical and chemical treat-
ment, polishing and disinfection.

Each category contains two sets of standards, A and B. Figures under A are standards to be applied by the authorities responsible for the surface water quality, while figures under B are the limits for the potable water producer, i.e. when these limits are exceeded, intake of subject water is to be stopped.

Appendix 9 shows potable water quality standards issued ' EC. The table shows the main detectable substances. Dutco potable water standards are derived from these standards.

Effluent waters generally contain the following pollutants:

- Suspended solids make the water muddy, improper for swimming water and expensive for use as raw water for potable water.
- Floating substances like oil cause depletion of oxyger and consequently death of fish.
- Colloidal dissolved substances give an unpleasant yellow color to the water.

0	SR	- PH EWF	ASE I
		CHECH	
С	ОММ	ENTS:	
		A	
B	Y	1/2	46.9
/	/		/

3.2

WP896193/13

- Higher temperatures decrease the solubility of oxygen and decrease the oxygen concentration of the receiving water by an higher oxidation of organic matter.
 - Inorganic salts which cannot be removed, make the water unsuitable for drinking or irrigation water.
 - Biodegradable Organic matter (BOD) decreases the oxygen content of the water with the already mentioned consequences.
 - Substances like heavy metals, pesticides herbicides, or radioactive materials are toxic to the aquatic organisms and human beings.
- Nitrates and phosphates cause excessive algae growth (eutrophication) which may lead to massive mortality and a sudden decrease in oxygen content.
- Biological pollution by viruses and bacteria causing diseases.

SURVEY OF WATER EFFLUENT LIMITATION

3.3

Netelia

-1

Appendix 10 shows water effluent limitations issued by various authorities. For comparison Dutch limitations for surface water quality has been added. Standards are given in various different units. US standards given absolute values per plant. World Bank and India provide values per 1,000 ton of feed, while India, Saudi Arabia and water quality figures provided by EC and The Netherlands, also give maximum concentrations of pollutants in the water. The effluent limitations are based on best available technologies economically feasible, or best conventional pollutant control technology.

WP896193/14

k n k n These techniques applicable for liquid effluent disposal include in-plant measures and process changes, like reduced flows through greater recycle and reuse of waste waters, or on-site treatment facilities designed to reduce specific contaminants. These include sour water strippens, oil-water separators, flotation units and biological treatment units. If present, industrial effluent could be discharged into a municipal sewer system after pretreatment in accordance with the requirements of the municipal authorities.

3.4

RECOMMENDATIONS

For water quality standards Dutch standards for fish water are recommended for the surface water quality after dispose of treated effluent. Although these standards are meant to serve a specific purpose, water with this quality can be considered as healthy from an ecological point of view.

Potable water standard may vary between different countries. Although EC standards are somewhat more stringent than WHO standards, EC standards are recommended. This standard provides an extensive list of constituents, which may be present in the raw water used to prepare drinking water. These values are to be met, except for those which only influence taste or color, like TDS. Apart from hygienical liability of the drinking water and the absence of toxic substances, some materials influence public health in larger quantities, especially nitrates, nitrates, magnesium and barium. This also applies to fluoride, which in small quantities has a healthy effect on teeth, but in larger quantities causes mottling of tooth enamel and weakening of human bones.

For water effluent limitations the Indian standards are recommended. US standards give absolute values which are not applicable to small plants. The World Bank standards are rather high. Moreover, these standards are not very practical with regard to treatment methods. This also applies to the first set of Indian standards. Therefore, the concentration limits provided by the Indian standards are recommended as standards to be met after treatment of the water effluent. Also, they are comparable with the Saudian standard and the Dutch surface water quality standards. For all other compounds care must be taken that concentrations in the surface water are not exceeded.

SOLID EFFLUENT

1

4.

Solid effluent from refineries consists mainly of process sludge and spent catalyst and sludge from oil/water separators and biological treating units. Solids contained in effluent water and flue gases are already dealt with in the respective chapters. Solid effluent can be continuous or intermittent. Continuous effluents are those resulting from continuous sludge disposal from waste water treating units, however, the produced quantity can vary.

Intermittent effluents result from cleaning of tanks, vessels and other process equipment during plant turnarounds, including removal of spent catalyst. Quantity and characteristics of intermittent waste depends on type of crude, type of processes and the degree of maintenance.

As for all effluents, but especially for solid waste, the most effective environmental control is to reduce the quantity. This can be achieved by better process control, change of process or use of catalyst with a longer lifetime. Quantity of sludge can be reduced by concentration.

Solid waste can contain a large variety of substances. Classification in accordance to their environmental effect is required to obtain a proper way of disposal. This classification should be based on toxicity, biodegradability, air polluting or groundwater polluting. Proper location and operation of disposal sites are one of the principal factors in handling solid waste, if landfill is used as the way to dispose off.

Sludge from biological plants can serve agricultural purposes if care is taken that no harmful substances are added. Chemical and organic waste can be destroyed by incineration. In all cases, standards for immission, emission as well as for water quality are applicable as described in the previous chapters. Especially for incinerators, emission and immission standards shall be observed, since toxic substances may be released through incineration. Sites used for landfill should be designed and operated to prevent or minimize water runoff. Unprotected waste piles are subject to leaking which may result in acidic or alkaline effluents percolating to streams or aquifers used for drinking water supply. NOISE

5.

Noise is described as undesired, unpleasant or even harmful sound. Noise is produced by vibrating parts of equipment, which directly generate pressure waves in the surrounding air or by turbulent gas streams around obstacles or by sudden changes in volume caused by heat, which can produce pressure waves.

The propagation of sound is by pressure waves traveling, generally through air, with the speed of sound.

In air the speed of sound is approximately 350 m/s.

Sound vibrations can also be transferred to the surrounding construction. This is the reason that noise from compressors, pumps and control valves, although they are the direc' source, is mainly caused by the often much larger surface of the adjacent piping.

Noise is expressed in decibels (dB) and can be indicated by a sound power level or a sound pressure level. The sound power level in dB equals ten times the logarithm of the ratio of the sound power level in W to a reference level. The sound pressure level in dB equals twenty times the logarithm of the ratio of the sound pressure level in N/m^2 to a reference level. The sound pressure level of a noise source is not a fixed value. It is depending on the distance from the source and the directivity of the source. A noise source is identified by its sound power level. A sound pressure level can be attributed to a location with regard to the noise source.

The human ear has the capability to hear and recognize sounds of different frequencies. Normal sound consists of a spectrum of frequencies. The human ear is capable of hearin frequencies from 15 Hz to 16 kHz, depending on age. However, not every frequency is observed at the same level. An internationally agreed "A" correction compensates for these differences. Sound levels expressed in dB(A) therefore represent the level received by the human ear.

An indication of the sound pressure levels caused under various situations is given in appendix 11. Noise sources can be either continuous or intermittent. Intermittent sources are generally considered as more annoying, even if the level is lower, although this is also dependent on type of source. Continuous sound pressure levels above 90 dB(A) have detrimental effects on human ear and human performance. In general, sound pressure levels of maximum 85 dB(A) are specified for in-plant noise, which means to locations where operators may be present. However, there is a tendency to lower this to 80 dB(A) but this difference often requires other measures than what can be reacted with silencers, enclosures and insulation.

Acceptable environmental noise levels are very dependent on the environment. In rural environments lower sound pressure levels are allowed than near cities. Sometimes it is specified that the noise contribution of a plant is not detectable at a certain location.

In The Netherlands a 24-hour value of 50 dB(A) is specified at the nearest houses, which corresponds to a sound pressure level at that location of 50 dB(A) during day time and 40 dB(A) at night. This "far field" noise level determines the maximum sound power level, which a total plant may radiate to the surroundings. However, ground and air attenuation effects can be subtracted.

For in-plant noise a maximum sound pressure level of 85 dB(A) is recommended. For environmental noise a maximum 24-hour sound pressure level of 50 dB(A) is recommended.

Ł

RECOMMENDED ENVIRONMENTAL DESIGN CRITERIA

Appendix 12 summarizes the recommended environmental criteria for immission, emission, water effluent limitations and noise limitations.

For immission values of other compounds than indicated the approach as given in paragraph 2.2 is recommended. For emission values of other compounds than indicated the method given in TA Luft (see paragraph 2.3) is recommended. For compounds not mentioned under water effluent limitations, care shall be taken that limits set for surface water, as given in paragraph 3.2 are not exceeded.

Emission values imposed to new complexes should be considered in concurrence with existing emissions and required immission values.

Although standards are based on available technologies, they may not always be applicable or economically feasible. This should be considered on a case-to-case basis and authorities could permit for temporary or permanent higher values, taking into account the total impact on the environment, including possible future extensions of the industrial area.

6.

0-6406 Page 1 of 1 Appendix 1 Appendix 1	hrs World Bank USA Germany EC Neth India Saudi Arabia WHO 100/1000 80/365 140/- 140/- -/500 120/- 85/400 60/150 effects)	100/500 60/260 50/- 60/150 -/100 nmental effects)	100/- 100/- 80///120 120/- 100//- (Note 1)	-/- 10000 10000//- 6000 5000/- 10000 -/11500 (Notes 1 (Note 3) and 2)	00/500 75/260 150/- 150/-	lates 60//100 nmental effects) (Note 1)	B hour average.
	Year/24 hrs Wo S02/S03 In the solution of the	S02/S03 (ehvirðnmental effects)	N0 _X 10	-/-	Particulates 10 (health effects)	Particulates (environmental effects)	

l

[]

[]

ľ

٤ .

L,

١.,

Į

Ľ

Ł

L

E

l

							SSR - PHASE I EWP RECHECKED DOCUMENT COMMENTS:
		REACT	IONS	S IN	AIR		
<u>Oxygen</u>							BY 2416,91
02	+	energy	-	->	0	+	0
0	+	02		>			
0	+	0		·->	02		
0	+	03		>	-		
03	+	energy	-	>	02	+	0
With Nitr	ogen	Oxides					ţ
0 ₃	÷	NO	-	>	NO2	+	02
03	+	NO2					02
NO3	+	NO			2N02		-
NO3	+	NO2		>	N205		
N205	+	н ₂ Ō		>	2HNO	3	
NO2	+	energy		>	NO	+	0
With Hydr	rocar	bons (But	tane)			
C4H10	+	0	-> (C ₄ H _a	•	+	OH.
C_4H_{10}	+	0H*				+	H ₂ 0
C ₄ H ₉	÷	02 -					-
C4H900.	+	NO -				+	NO ₂
	+	02 -	-> (C3H7	СНО	+	HO2
HO2	+		-> (+	NO ₂
с _з н ₇ сно	+	ÖH≛ -	-> (^C 3 ^H 7	с• 0	+	H ₂ 0
C ₃ H ₇ C・ ∥ 0	+	0 ₂ -	->	с _{з^Н7}	coo* 0		
C3H7C00. ∥ 0	+	N0 ₂ -	->		сооно 0	2 (pe	eroxybutyrylnitraat)

WP896193/21

ł.

Ĩ,

Ē;

Ľ

Į,

Ĩ

9

Ł

ĺ

[_____

Ľ

Ĺ

Ł

Ľ

ľ

Ľ

I

REACTIONS IN AIR (Cont'd)

٠

P.

.1

Ę

÷)

F:

1

Í,

Ł

Ľ,

 $\int dt dt$

Ľ,

L,

Ĺ

Ľ

L

1

I

<u>Sulfur D</u>	ioxide	2				
250,	+	0 ₂ (+M)	>	2S0 ₃		
s0 ₂	+	H ₂ 0	>	H ₂ S0 ₄		
2NH ₃	+	H ₂ SO ₄	>	(NH ₄) ₂ SO ₄		
Fluoro H	ydroc	arbons				
CFC13	+	energy	>	CFC12	+	C1
C1	+	0,	>	c10 -	+	02
C10	+	໐ັ	>	C1	+	02

	grens-			0.1		2		270	8		1	8'E	\$00°0	1	0,001	•	j, a		0.01	0.75	C.C	10'0		0,002	9 t		8.4	4.6	6 0'0	_	0,0 <u>5</u>		[n'n	-	100'0	-	Sim'o	61	ī	ĩ	A	pp	en	di			100'0
			m/.hu	1				t	I		L	7Boa	1	t ::	ł	350	т <u>с</u>	e e e	2 7 1	ı		50		S 0	ī	110	· · ·	ı	9		8.0	- 1 a	2	170	L	ř	¥.		9		т			5.5	18	Ľ'I	-
Reukgrenzen			um/Mur	9.0				1	ı		I	4	000	ŧ	1	0'1	. 3	7 0	0.04	1		100'0		£10'0	1		đ	• 5	₽ 0'0		٥,1	1 0		80,0	r,	ı	ł	1	ı	I	ł	90	0,0	6,2	6'0	0°02	1000'0
			rul/un	100		INI	1	0006	55		ï	oye	010	8	0'3	065			Bo Bo	110	-	90		8'0	-lfo	340	840	0	15		6	06		375	0,14	1080	45	<u>8</u>	0 +I) 	6			1	5	2	<u>.</u>
				a				+	+		*	a						• •		553 44		-		08	~	. 04		. 61	61		c a (* *		•	æ	-	Ħ	64		5	+	0	ŧ.		*		ce o
				imbutviacetaat	leaf and the second sec		-	kooldioxyde	kwimonoxyde		methaan	incibated a			methythistenytaaten MLD	mempleBylkelon 	methy institution methodischurk belien	nethylinetacrylaat	a-methylstyreen	monochloorbenzeen	2	nafialcen		UCTO	n-penjaan	perchlourethyleen	n-propylacciant	pripylennixyde	pyridine		stikstoftonsyde stikstoftonsontode			tolucen	tolucendiisseyanant TDI	r, r, s, trichlesserthamn	1,1,2-Inchinorthann	ווא האאארו האוסכת	vinylchloride	•	watchio	kylcen		zoutzuur	ZWAVCIGIUNYDC		ZWAVELZING
is is a second s	waarde	nug/mit		70		0,001	ī	0,18	0,25	0,2		0,005'	0,11	40	6.1	0,3		0.03	0,12	01	£n'n	ī	0.7	0,3		0,000		of.	5.0	2	1'0	900'u	60'0 500 0	100 U	0,01		16	J.6	0,001		S	SI	R -	. P	H	AS	SE
17CU	laiven	(m/m)		1500		+	5	42	.9	,		420			33	35		1	3700	2 7000	2'0	1500				ĩ	1	21000	2		7	ı.	~ /		• 1		-	î.	i		$\left[\right]$	ŀ	1			ED NT	
Rcukgrenzen	onder	me/m		•	i)	C 0'0	1	0,1	0.45	1 1		-	Ξ		0,2	(.o'o		0,06	30	~	0'03	17		Ξ		t	1 1	7			0,02	E	0°0		<u>,</u>		(66)	١	I		C	ON	IME	NT	S:_		
MAC				00¥8		55,0	6	81	i i	0		10	. =	0241	150	210			120	0101	300	300	200	1200		-		0061		ĥ	61				•• 0	6	Ifon	Jfo	0,13		B	Y	1	A	A. Z	4/9	- TP
	Carte.	porte	a de la de	+	-		-	5				-		4	. 6	a		7	-	64	64	-	L	8		-	*	•	7	Ĩ	04					ĺ z	-	-	-			/	A	Ć	_	_	-
				Acrion	w.etyleen	acroleine	Acrylnitril	armoniak		azinzuur anhydride		benzeen	blauwzuur	ivutan	n-butanoi	n-butylacetaat		chlowr	chlomform	Cyclubexaan	Cyclohexanon	i.a dichloorethaan	dichloormethaan	diethylether		epichloorhydrine	ethwan	rthmm!		CHIVICTINATUC	fenol	fluorwateratof	formaldehyde	I ON (OTWELC FULOR	limiters firefirevla feedbol		n-heptman	n-hraan	hydrazine								

ł

				EMISSION STANDARDS	TANDARDS		0-64u6 Page 1 of 1 Appendix 4
		World Bank	USA	Germany	Neth	Saudi Arabia	India
502/503		500 TPD	340 mg/MJ	340 mg/MJ 1700 mg/m ³	2000 mg/m ³	CM/g I	0.25 kg/ton crude
		100 TPD (Note 1)	(Note 4)	(Note 2)	(Note 2)		2.5 kg/ton feed (Note 3)
NOX		130 mg/MJ	129 mg/MJ 450 mg/m ³	450 mg/m ³	450 mg/m ³	130 mg/MJ	à
Particulates	ates	100 mg/m ³	43 mg/MJ	mg/MJ 80 mg/m ³	50 mg/m ³	43 mg/MJ	ĩ
Notes:	Ξ.	Tons per day: Lowest value for polluted areas.	Lowest valu	ue for pollute	d areas.		·
	2.	For refineries	s, not for c	other combusti	For refineries, not for other combustion installations.	ls.	
	э.	First figure for crackers.		ere and vacuum	ı distillation u	mits, second fic	atmosphere and vacuum distillation units, second figure for catalytic
2	4.	For refinery 1 230 mg/dry sta	fuel gas ₃ con andard m [.]	mbustion devic	es: No fuel gas	For refinery fuel gas ₃ combustion devices: No fuel gas which contains H ₂ S in excess 230 mg/dry standard m ² .	H ₂ S in excess of
		ä				BY_	SSF

 $\langle \cdot \rangle$

•

WP896193/24

ł,

Ē

•

)

Ĩ,

1

L

[/

Ľ

Į

Į_

Ł

Ľ

L

Ľ

I

Stof			Klasse	Stof			N1as
Acetaidehyd		C.H.O	I	2-Furaldehyd		С.Н.О.	ſ
Aceton		C,H,O	in	Furfural.Furfurol	siche 2-Furaldehyd		2
Acrolein	siehe 2-Propenal	• •		Furfurylaikohol Givkol		C'H'O'	П
Acrylsaure	and the state of t	с,н,о,	1	Holzstaub in atembarer Form	siehe Ethylengiykol		
Acryisaureethylester Acryisauremethylester	siehe Ethvlacrvlat siehe Methvlacrvlat			+Hydroxy-4-methyl-2-pentanoi		C II O	I
Alkvialkohole	siene methylactylat		III	2.2' Iminodiethanol	•	C,H.,O. C,H,,NO.	Ш Ц
Alkyibleiverbindungen			[Isobutyimethyiketon	siche 4-Methyl-2-	C11111.40.	ц
Ameisensaure		CH.O.	ī		pentanon		
Ameisensauremethviester	siehe Methylformiat			Isopropenyibenzoi		C_H ₁₀	Ц
Anilia Benzvichlond		C'H'N	1	Isopropyibenzoi Kohlenstoffdisuifid		C.H.	п
Biphenvi	siehe a-Chlortoluol	<i>c</i>		Kresole		<i>C</i> ,	U
Butanon		С,,Н,, С,Н,О	1 111	Maleinsäureanhydrid		CHO CHO,	1
2-Butoxyethanol		C,H,O.	II	Mercaptane	siehe Thioalkohole	C'1702	
Butylacetat		C,H,O,	in	Methacrylsauremethylester	siche		
Butvigiykol	siehe 2-Butoxyethanol	-612 = 2			Methylmethacrylat		
Butyraldehyd		C,H,O	п	Methanol	siehe Alkylalkohole		
Chloracetaldehyd Chlorbenzol		с.н,сю	1	2-Methoxyethanol Methylacetat		C,H,O.	11
Chlor-1. 3-Butadien		C,H,CI	п	Methylacetat		CHO.	п
Chloressigsaure	8	C,H,CI	11	Methylamin		C,H,O	I
Chlorethan		C.H.CIO.	1 []]		ASET	CH,N C,H,O.	1 111
Chlormethan		CH,CI	11	Methylchiond SSR - PF	ASE I siche Chlormethan siche 1.1.1-	C41 19 C 2	111
Chloroform	siehe Trichlormethan		•	Methylchiorotorm EW	suche 1,1,1-		
2-Chloropren	siche 2-Chlor-			MethylcycloherationeRECHEC	Trichtorethan		
101	1.3-Butadien			Methylcycloheranone RECHEC	KED	C.H.O	П
2-Chlorpropan a-Chlorpoluol		C.H.CI	п	Methylenchiond DOCUM	Stelle Dicalo methan	- 27	
		C-H-CI	I	Methylethylketon Methylformuat COMMENTS	siche 2-Butation		
Cumol Cyclohexanon	siehe isopropyibenzoi			Methylformuat COMMENTS Methylgiykol		C'H'O'	и
Diacetonaikohol	richa I. Budeoni, 4	C,H10O	11	Methylisobutviceton	siche 2-Methoxyethano	61	
	siehe + Hydroxy + methyl-2-pentanon			<u> </u>	-d-pentanon		
Dibutylether	anotayi-z-pentanon	C,H,O	ш	Methylmethycrylat	1	с,ңо.	II
1.2-Dichlorbenzoi		C,H,CL	1	+Methyl-2-pertunon 1/		C,H,O	ш
.4-Dichlorbenzol		C,H,CL	'n	+Methyl-m-	21601	• 1•	
Dichlordifluormethan		CCLF,	III	phenylendiisocranagy_/	<u>c.4/18/17</u>	C.H.N.O.	1
1.1-Dichlorethan		C.H.C.	II	N-Methylpyrrolition		C.H.NO	ш
1.2-Dichlorethan		C.H.CL	1	Naphthalin Nitrobenzol		C, H	п
1.1-Dichlorethylen 1.2-Dichlorethylen		CHC	I	Nitrokresole		C.H.NO.	[
Dichlormethan		CHC	III	Nitrophenole	1	C.H.NO,	I I
Dichlorphenole		CH.CL	ш I	Nitroluole		CHINO.	I
Diethanolamin	siehe 2.2'-	C ⁸ 11 ⁶ Cr ² O	•	Olefinkohlenwasserstoffe			•
	Immodiethanol			(ausgenommen 1.3-Butadien)			п
Diethylamın		C ₄ H ₁₁ N	I	Paraffinkohlenwasserstoffe			
Diethylether		C,H,O	Ш	(ausgenommen Methan)			ш
Di-(2-ethylhexyl)-phthaiat		C ₂₄ H ₃₄ O ₄	П	Perchlorethylen Phenoi	siehe Tetrachlorethylen		
Diisobutyiketon	siche 2.6-Dimethyl-			Pinene		C,H,O	т Ш
Diisopropylether	heptan-4-on	CH O		2.Propenal		ਟ, ਮ. ਟ, ਮ.੦	1
Dimethylamin		C,H,JO C,HLN	111 1	Propionaldehyd		C,H,O	II I
Dimethylether		CH,O	п	Propionsaure		CH,O.	ū
N.N-Dimethylformanid		CHNO	п	Pyridin		C,H,N	ſ
2.6-Dimethvlheptan-4-on		C,H ₁₄ O	Ш	Schwefelkohlenstoff	siche		
Dioctylphthalat	sehe Di-(2-ethylhexyl)-			Street	Kohlenstoffdisulfid		_
1,4-Dioxan	phthalat	au -	200	Styrol 1.1.2.2-Tetrachlorethan		C.H.	Π
Diohenvi	siche Bipheavl	C,H,O,	1	Tetrachiorethylen		CHO.	1 1
Essigester	siehe Ethviacetat			Tetrachlorkohlenstoff	siehe Tetrachlormethan	, c.a.	u
Essignaure	and the second se	сно,	11:00	Tetrachlormethan	R	'ca,	1
Essigsaurebutylester	siehe Burylacetat			Tetrahydrofuran		C,H,O	ū
Essigsaureethylester	siehe Ethylacetat			Thioalkohole			1
Essignauremethylester	siehe Methylacetat			Thioether			i
Essigsaurevinylester Etnanoi	siehe Vinylacetat			o-Toludin		C_H_N	1
Ether	siche Aikylaikohole			Toluol	1. N. 1 N A A A A	С.ң	Ц
2-Ethoxyethanol	siehe Diethylether	CHO		Toluylen-2,4-diisocyanat	siehe 4-Methyl-m-		
Ethylacetat		C,H,O, C,H,O,	п пі	1,1.1-Trichlorethan	phenylendiisocyanat	с.н.с.,	п
Ethylacrylat		C,H,O,	111	1.1.2-Trichlorethan		CH,CL	I
Ethylamin		C.H.N	1	Trichlorethylen		CHCL	ū
Ethylbenzol		C.H.,	iπ –	Trichlormethan		CHCI,	1
Ethylchlond	nehe Chlorethan			Trichlorphenole		c,H,ÓC,	t
Ethylengiykol Ethylengiykol		C.H.O.	Ш	Trichylamin		CHUN	I
Ethylenglykolmonoethylether Ethylenglykolmonomethylether	siehe 2-Ethoxyethanol			TrichlorBuormethan		COLF	ш
Ethylengiykolmonomethylether Ethylgiykol		I		Trimethylbenzole Vinylacetat		CH ₂	п п
Ethylmethylketog	siehe 2-Ethoxyethanol siehe 2-Butanon			Xylenole (ausgenommen		с,ң _о	μ
Formaldehyd		сңо	I	2.4-Xvienoi)		стн"о	1
			•	2.4Xylenol		CH.0	ά
				Xylole		C ₄ H ₁₀	

	elektrici bedrijve		raffinade	rijen	industri	e-totaal	overige s activiteit	ectoren/	alle secto activiteite	
	S	e.f.	S	c.f.	S	e.f.	S	e.f.	S	e.f.
1975 steenkool petroleum	1,14	875			1,1	770	1,0	650	0,042 0,59	19,6 273
HBO ³⁾ zware stookolie	2,17	1055	4,0	1950	2,63	1 280	2,63	1 280	6,0	213
1976 steenkool petroleum	1,1	845			1,1	770	1,0	650	0,037 0,47	17.3 219
HBO ³⁾ zware stookolie	2,0	975	3,6	1755	2,5	1 220	2,5	1 220	0,47	21)
1977 steenkool petroleum	0,9	690			1,1	770	1,0	650	0,037 0,44	17,3 207
HBO ³⁾ zware stookolie	1,65	810	3,4	1660	2,4	1 180	2,4	1 1 8 0	0,11	201
1978 steenkool petroleum	0,82	630			1,1	770	1,0	650	0,037 0,42	17,3 194
HBO ³⁾ zware stookolie	1,52	745	3,6	1755	1,93	940	1,93	940	0,42	19,
1979 steenkool petroleum	0,62	480			1,1	770	1,0	650	0,037 0,42	17,1 194
HBO ³⁾ zware stookolie	1,58	770	3,6	1755	2,05	975	1,74	850	0,42	
1980 steenkool petroleum	0,85	655			1,0	700	1,0	650	0,019 0,32	9 149
HBO ³⁾ zware stookolie	1,49	727	2,65	1 295	1,76	860	1,76	860	0,52	• • •
1981 steenkool petroleum	0,87	7 670			1,0	700	1,0	650	0,018 0,27	8 125
HBO ³⁾ zware stookolie	1,52	2 750	2,60	1 270			1,53	750	0,27	.23

Zwavelgehalte S in [gew. %]; emissiefactor e.f. in [g/GJ].
 Exclusief gas- en oliewinningsbedrijven en steenkoolcokesfabrieken.
 Inclusief hallfabrikaten.

22

•

e į

1

í İ,

Ē

1

11

Bron: Emissie door verbranding van fossiele brandstoffen in ovens 1975-1981 (CBS).

2

Appendix 7

Parameter Eanheid A B A B Zuurgraad pH-eenheden 7.0 8.5 - 6.5 9.0 - kleunintensiteit mg/l 2 - 201 50 1000 geuspendeedes soffen mg/l 2 - - 53 25 geuspendeedes soffen mg/l C - 201 50 100 geuspendeedes soffen mg/l C 100 - 100 - splitaat mg/l C 150 - 200 - sulfaat mg/l S0. - 100 1.0 - ammonuam mg/l N - 0.2 - 2.5 - coltaata mg/l N 1.0 - 2.5 - coltaata mg/l N 0.2 - 0.2 - coltaata mg/l N 0.2 - 50 <th></th> <th></th> <th colspan="3">K waistertsk lassen</th> <th colspan="3">111</th>			K waistertsk lassen			111		
ratifiety Links μ_{gl} 2 $6.5 - 9.0$ Lungraad pH-eenbeden 7.0 - 8.5 - $6.5 - 9.0$ kleunntenstett mg/l 25 - - 50 100 gestupendeerde stoffen mg/l 25 - - 50 100 geturverdunningsfactor by 20 °C - 3 - 16 - chlonde mg/l CL 150 - 200 - fluonde mg/l N 1.0 - 200 - amonium mg/l N 1.0 - 2.2 - organisch gebonden stikstol mg/l N 1.0 - 2.5 50 50 fusiod opgelost ² mg/l O ₁ - - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.5 - 0.5		Feeberd		8		B	A	В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				(AT)		-	6.5 - 9.0	-
kleunitensiteit mg/l -	e	F				1001	-	200
gesupprotected storten mg/l L3 25 26 200 7 100 100 7 16 7 100 7 16 7 200 7 110 1.0 7 16 7 100 100 25 110 100 100 25 110 100 100 100 120 110						50*	-	-
temperatuut ms/m bij 20 °C 100 - 100 geur-verdunningsfactor bij 20 °C - 3 - 16 sulfaat mg/l Cl 150 - 200 - fuonde mg/l F - 1.0 1.0 - ammonum mg/l N - 0.2 1.2 1 organsch gebonden stikstof mg/l N 1.0 - 2.5 50 50 forfaat ' mg/l O; - 2.5 50 50 50 forfaat ' mg/l O; - - 0.2 - 0.2 - suurstof opgelost ' mg/l O; - - > 5 -						251	-	25
geledingsvermogen voor elektrichet mS/mB) 20°C - 1 - 16 - 16 chlonde mg/l G 150 - 200 -					•••	_1	100	-
gell verballmingslation by 50 c mg/l Cl 150 200 - sulfaat mg/l S0, - 100 100 250 floande mg/l N - 0.2 1.2 1 ammonium mg/l N 1.0 - 2.5 50 50 organisch gebonden stikstof mg/l NO; - 2.5 50 50 cofstaat ¹ mg/l O; - - 0.2 - - 0.2 - - 0.2 - - 0.2 - - 0.2 - - 0.2 - - 0.2 - - 0.2 - - 0.2 - - 0.2 - - 0.2 - - 0.2 - 0.2 - - 0.2 - - 0.2 - - 0.2 - - 0.2 - - 0.2 - - 0.2 - - 0.2 - - 0.3 0.3 - - 0.3 0.3 0.3 - -						-	20	-
Chornolog Img/l S0, - 100 100 250 fluonode mg/l F - 1.0 1.0 - - 1.2 1.3 ammonium mg/l N 1.0 - 2.5 - - 1.2 1.3 ammonium mg/l NO; - 2.5 50 <td< td=""><td></td><td></td><td>-</td><td></td><td></td><td>2</td><td>200</td><td>-</td></td<>			-			2	200	-
Sultat Ingl SO, I.0 I.0 ammonum mg/l F - 1.0 1.0 organisch geborden stikstof mg/l N 1.0 - 2.5 50 SS intraat mg/l NO; - 2.5 50 SS - corganisch geborden stikstof mg/l O; - - 2.5 50 SS counstof opgelost ¹ mg/l O; - - >.30 - 1.00 - 2.5 - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>250</td>								250
Intonice Ing/1 - 0.2 1.2 1.2 organisch gebonden stikstof mg/1 N0; - 0.2 - 2.5 50 50 nitraat mg/1 N0; - - 2.5 50 50 cofganation mg/1 O; > 6 - > 55 - chemisch zuurstofverbrukit mg/1 O; - - > 30 - biochemisch zuurstofverbrukit mg/1 O; > 3 - > 6 - natrum mg/1 Re - 0.3 0.5 - iger opgelost * mg/1 Re - 0.3 0.5 - inangan * µg/1 Min 50 - 500 - zink µg/1 Zn - 200 1.000 - boor µg/1 As - 20 20 1.000 arscen µg/1 As - 20 20 5 lood µg/1 Pb - 30 30 5 lood µg/1 Pb - 0.3 0.3 - <td></td> <td>• •</td> <td>-</td> <td></td> <td></td> <td>2.0</td> <td>1.0</td> <td></td>		• •	-			2.0	1.0	
antimonum mg/1 N 1.0 - 2.5 50 50 nitraat mg/1 NO; - 2.5 50 50 50 intraat mg/1 O; > 6 - > 5 - 0.2 - chemisch zuurstofverbruk* mg/1 O; > 6 - > 5 - - > 50 - biochemisch zuurstofverbruk* mg/1 O; > 3 - > 50 - - > 50 - - > 50 - - > 50 - - > 50 - - > 50 - - > 50 - - > 50 - - > 50 - <td< td=""><td>londe</td><td></td><td></td><td></td><td></td><td>1.2</td><td>1.0</td><td></td></td<>	londe					1.2	1.0	
origination getonical method mg/1 No; - 25 50 50 50 (osfaat) mg/1 P 0.2 - 0.2 - zuurstoi opgetost ² mg/1 O; > 6 - > 5 - hochemisch zuurstofverbruk ² mg/1 O; > 3 - > 6 - natrum mg/1 Na 90 - 120 - natrum mg/1 Na 90 - 120 - natrum mg/1 Re - 0.3 0.5 - iger opgetost ¹ mg/1 Re - 0.3 0.5 - iger opgetost ¹ mg/1 R - 200 200 1.000 zink mg/1 RA - 200 20 1.000 screen mg/1 RA - 20 20 50 cadmium mg/1 Se - 10 10 1 kwik mg/1 Hg - 0.3 0.3 5 lood mg/1 Se - 10 10 1 kwik <t< td=""><td>monum</td><td>v</td><td></td><td></td><td></td><td></td><td>3.0</td><td></td></t<>	monum	v					3.0	
Initial mg/1 P 0.2 - 0.2 zuurstof opgelost ¹ mg/1 O ₁ >6 - >5 - chemsch zuurstofverbruk ¹ mg/1 O ₁ - - >30 - natnum mg/1 Na 90 - 120 - natnum mg/1 Na 90 - 120 - natnum mg/1 Na 90 - 500 - siangaan ¹ µg/1 Mn 50 - 500 - siangaan ¹ µg/1 R 1000 - 1000 - stargeen µg/1 R 1000 - 1000 - arseen µg/1 As - 20 20 50 cadmium µg/1 Cd - 1.5 1.5 - chroom µg/1 Fb - 30 30 5 - lood µg/1 Sa - 100 200 1.00 10 4 wwik µg/1 Kg - 0.3 0.3 0.3 5 50 50 <t< td=""><td>ganisch gebonden stikstof</td><td></td><td>1.0</td><td></td><td></td><td></td><td>5.0</td><td>50</td></t<>	ganisch gebonden stikstof		1.0				5.0	50
Institut Institut Institut Institut Institut Institut chemisch zuurstofverbruik ¹ mg/l O ₁ - - > 50 - biochemisch zuurstofverbruik ¹ mg/l O ₁ > 3 - > 6 - natnum mg/l Na 90 - 120 - - ijzer opgekost ¹ mg/l Fe - 0.3 0.5 - iangaan ¹ µg/l Nn 50 - 500 - koper µg/l Cu - 50 ¹ 50 - zink µg/l Zn - 200 200 1.000 boor µg/l As - 20 20 50 cadmium µg/l Cd - 1.5 1.5 - lood µg/l Se - 10 10 4 kwik µg/l Mg - 0.3 0.3 - oppervlakte-actieve soffen µg/l Mg - 0.0 50 50 50 oppervlakte-actieve soffen µg/l - 0.05 0.1	traat	mg/I NO;		25			0.2	50
Zulušto objetosti * ingli 0, 1 $ -$ > 50 biochemusch zuusto/verbruk * mg/l 0, 2 > 3 $-$ > 6 biochemusch zuusto/verbruk * mg/l Na 90 $-$ 120 biochemusch zuusto/verbruk * mg/l Na 90 $-$ 120 biochemusch zuusto/verbruk * mg/l Re 0.3 0.5 1 biochemusch zuusto/verbruk * mg/l Re $ 0.3$ 0.5 1 iger opgelost * mg/l Re $ 0.3$ 0.5 1 iangaan * $\mug/l Rn$ 50 $ 500$ 100 zink $\mug/l Ca$ $ 200$ 1000 $ 1000$ $-$ scenen $\mug/l Ca$ $ 1.5$ 1.5 <td< td=""><td>sfaat³</td><td>mg/IP</td><td>0.2</td><td></td><td></td><td>121 () 1</td><td></td><td></td></td<>	sfaat ³	mg/IP	0.2			121 () 1		
Citemistri zuursioverbruk 1 mg/l O ₁ > 3 - > 6 natnum mg/l Na 90 - 120 niger opgekost 1 mg/l Fe - 0.3 0.5 iargaan ² µg/l Mn 50 - 50 koper µg/l Cu - 501 50 boor µg/l Zn - 200 1.000 boor µg/l As - 20 20 1.000 boor µg/l As - 20 20 50 cadmum µg/l Cr - 20 50 5 cadmum µg/l Pb - 30 30 5 seleen µg/l Hg - 0.3 0.3 10 1 kwik µg/l Hg - 0.3 0.3 0.5 00 oppervlakte-actieve stoffen µg/l 200 - 200 200 100 minerale ole µg/l - 0.2 0.2 0.2 0.2 0.2 oplycyclische aromatische µg/l -	iurstof opgelost ²	mg/IO,	> 6	-		-	>4	
bookerings 2000 mg/1 Na 90 - 120 nizer opgelost ¹ mg/1 Fe - 0.3 0.5 3 jangaan ¹ µg/1 Mn 50 - 500 - koper µg/1 Cu - 501 50 - zink µg/1 Zn - 200 1.000 - boor µg/1 As - 200 200 1.000 cadmium µg/1 Cd - 1.5 1.5 - cadmium µg/1 Cd - 100 10 4 kwik µg/1 Pb - 30 30 55 lood µg/1 Rg - 0.3 0.3 - banum µg/1 Ba - 100 10 4 kwik µg/1 CN - 50 50 50 oppervlakte-actieve stoffen µg/1 CN - 50 200 1.00 reageen met methyleenblauw µg/1 C, H, OH - 1 - - minerale olie µg/1 C, H, OH -	temisch zuurstofverbruik ²	mg/10,	-	-			> 40	
Institution Ingrit Ref Ingrit Ref Institution Institution ijzer opgekost ² mg/l Fe - 0.3 0.5 1 iangaan ² µg/l Mn 50 - 500 1 koper µg/l Cu - 501 50 1 zink µg/l Zn - 200 200 1.000 boor µg/l As - 20 20 50 cadmum µg/l Cd - 1.5 1.5 50 cadmum µg/l Cf - 20 30 55 lood µg/l Re - 0.3 0.3 50 lood µg/l Se - 10 10 4 kwik µg/l Hg - 0.3 0.3 50 banum µg/l Ba - 1000 200 1.000 reageren met methyleenblauw µg/l 200 - 200 200 200 polycyclische aromatesche µg/l - 0.25 0.2 0.2 0.20 200 200 <td>ochemisch zuurstofverbruik²</td> <td>mg/10,</td> <td>> 3</td> <td>82</td> <td></td> <td>-</td> <td>> 7</td> <td>22</td>	ochemisch zuurstofverbruik ²	mg/10,	> 3	8 2		-	> 7	22
inglife inglife inglife inglife inglife inglife inglife inagaan ² $\mu g/l$ Mn 50 - 500 500 koper $\mu g/l$ Cu - 500 200 1.000 zink $\mu g/l$ Rs - 200 200 1.000 arseen $\mu g/l$ Rs - 20 20 50 cadmium $\mu g/l$ Cd - 1.5 1.5 5 lood $\mu g/l$ Rb - 30 30 5 lood $\mu g/l$ Rb - 0.3 0.3 0.3 lood $\mu g/l$ Rb - 0.0 200 1.00 rann $\mu g/l$ Rb - 0.3 0.3 0.3 barum $\mu g/l$ Rb - 0.0 200 1.00 ryanide $\mu g/l$ CN - 50 50 50 oppervlakte-active stoffen $\mu g/l$ - 1 - - minerale obe $\mu g/l$ - 0.2 0.2 0.2 0.05 <td< td=""><td>เกินก</td><td>mg/l Na</td><td>90</td><td>-</td><td></td><td>(#):</td><td>120</td><td></td></td<>	เกินก	mg/l Na	90	-		(#):	120	
hangaan $\mu g/l$ Cu - S0 S0 koper $\mu g/l$ Cu - S0 ¹ 50 zink $\mu g/l$ B 1000 - 1.000 boor $\mu g/l$ B 1000 - 1.000 arseen $\mu g/l$ As - 20 20 S0 cadmuum $\mu g/l$ Cd - 1.5 1.5 chroom cadmuum $\mu g/l$ Pb - 30 30 55 lood $\mu g/l$ Pb - 30 30 55 seleen $\mu g/l$ Ba - 100 10 4 kwik $\mu g/l$ Ba - 100 200 1.000 spanum $\mu g/l$ Ba - 100 200 1.000 synthe $\mu g/l$ CN - 50 50 50 oppervlakte-active stoffen $\mu g/l$ - 0.3 0.30 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200	ter opgekast 2	mg/l Fe	3 -3	0.3	0.5	2.0	0.5	÷=
kolpet $\mu g/1 Zn$ - 200 1.000 boor $\mu g/1 B$ 1.000 - 1.000 - arseen $\mu g/1 As$ - 20 20 59 cadmium $\mu g/1 Cd$ - 1.5 1.5 chroom $\mu g/1 Cf$ - 20 50 55 lood $\mu g/1 Pb$ - 30 30 55 lood $\mu g/1 Ba$ - 10 10 1 kwik $\mu g/1 Ba$ - 0.3 0.3 0.3 barum $\mu g/1 CN$ - 50 50 50 coppervlakte-actieve stoff en - 1 - - die reageren met methyleenblauw $\mu g/1$ 200 - 200 200 reagerechte arctieve stoff en - - 50 200 20 20 minerale olie $\mu g/1$ - 0.2 0.2 0.2 0.2 0.2 organochloorpesticiden $\mu g/1$ - 0.05 0.1 0.05 0.1	angaan ¹	µg/l Mn	50			-	500	20
zink $\mu g/1 Zn$ - 200 200 1.000 boor $\mu g/1 B$ 1.000 - 1.000 - arseen $\mu g/1 As$ - 20 20 50 cadmium $\mu g/1 Cf$ - 20 50 55 lood $\mu g/1 Cf$ - 20 50 55 lood $\mu g/1 Se$ - 10 10 1 kwik $\mu g/1 Ba$ - 100 200 1.00 banum $\mu g/1 Ba$ - 100 200 1.00 yanide $\mu g/1 CN$ - 50 50 55 oppervlakte-actieve stoffen - 100 200 1.00 met waterdamp vluchuge (enolen $\mu g/1 CN$ - 50 200 200 polycyclische aromatische - - 0.2 0.2 0.2 koolwaterstoffen $\mu g/1$ - 0.05 0.1 0.1 0.05 organochloorpesticiden $\mu g/1$ - - 0.05 0.1 0.05	DOCT	µg/1 Cu	-	501			50	
boor $\mu g/l$ B 1000 - 1.000 - arseen $\mu g/l$ As - 20 20 50 cadmium $\mu g/l$ Cd - 1.5 1.5 chroom $\mu g/l$ Cf - 20 50 55 lood $\mu g/l$ Pb - 30 30 55 seleen $\mu g/l$ Se - 10 10 1 kwik $\mu g/l$ Hg - 0.3 0.3 0.3 banum $\mu g/l$ Ba - 100 200 1.00 oppervlakte-actieve stoffen - - 50 50 50 oppervlakte-actieve stoffen - - - - - die reageren met methyleenblauw $\mu g/l$ CN - 50 200 200 oppervlakte-actieve stoffen - - - - - minerale olie $\mu g/l$ C, H, OH - 1 - - - organochloorpesticiden totaal $\mu g/l$ - 0.2 0.2 0.1 -	•		-	200		1.000		3.000
arseen $\mu g/l$ As $ 20$ 20 50 cadmium $\mu g/l$ Cd $ 1.5$ 1.5 chroom $\mu g/l$ Cr $ 20$ 50 lood $\mu g/l$ Pb $ 30$ 30 seleen $\mu g/l$ Se $ 10$ 10 kwik $\mu g/l$ Hg $ 0.3$ 0.3 barnum $\mu g/l$ Ba $ 100$ 200 1.00 synide $\mu g/l$ CN $ 50$ 50 50 oppervlakte-actieve stoffen $\mu g/l$ CN $ 50$ 200 200 die reageren met methyleenblauw $\mu g/l$ C, H, OH $ 1$ $-$ minerale olie $\mu g/l$ $ 0.2$ 0.2 0.2 polycyclische aromatische $\mu g/l$ $ 0.05$ 0.1 organochloorpesticiden $\mu g/l$ $ 0.5$ 1.0 bacternén van demediaan per $ 0.5$ 1.0 bacternén van demediaan per 100 mi* 20 $ -$ thermotolerante bacternénmediaan per 20 $ -$			1.000	-	1.000	-	1.000	100
cadmium $\mu g/l Cd$ - 1.5 1.5 chroom $\mu g/l Cr$ - 20 50 55 lood $\mu g/l Pb$ - 30 30 55 seleen $\mu g/l Se$ - 10 10 1 kwik $\mu g/l Hg$ - 0.3 0.3 0.3 barum $\mu g/l Ba$ - 100 200 1.00 mainte $\mu g/l CN$ - 50 50 50 oppervlakte-actieve stoffen - - - - die reageren met methyleenblauw $\mu g/l$ 200 - 200 200 polycyclische aromatische $\mu g/l$ - 0.2 0.2 0.2 0.2 polycyclische aromatische $\mu g/l$ - 0.05 0.1 0.1 - organochloorpesticiden totaal $\mu g/l$ - 0.05 0.1 0.1 organochloorpesticiden $\mu g/l$ - - 0.05 1.0 bactenén van de meduaan per - - -			1 m m m m m m m m m m m m m m m m m m m	20	20	50	2	50
chroom $\mu g/l \ Cr$ - 20 50 5 lood $\mu g/l \ Pb$ - 30 30 5 seleen $\mu g/l \ Se$ - 10 10 1 kwik $\mu g/l \ Hg$ - 0.3 0.3 0.3 barunn $\mu g/l \ Ba$ - 100 200 1.00 zyanide $\mu g/l \ Ba$ - 100 200 1.00 zyanide $\mu g/l \ CN$ - 50 50 50 oppervlakte-actieve stoffen - - - - die reageren met methyleenblauw $\mu g/l$ 200 - 200 met waterdamp vluchtige lenolen $\mu g/l$ - 50 200 20 polycyclische aromatische - - - - - koolwaterstoffen $\mu g/l$ - 0.2 0.2 0.2 0.3 organochloorpesticiden totaal $\mu g/l$ - - 0.05 0.1 - organochloorpesticiden $\mu g/l$ - - 0.5			<u></u>	1.5	1.5	3		
lood $\mu g/l$ Pb-30305seleen $\mu g/l$ Se-10101kwik $\mu g/l$ Hg-0.30.3barnum $\mu g/l$ Ba-1002001.00 γ_{3} anide $\mu g/l$ Ba-1002001.00 γ_{3} anide $\mu g/l$ CN-505050oppervlakte-actieve stoffendie reageren met methyleenblauw $\mu g/l$ 200-200met waterdamp vluchtige lenolen $\mu g/l$ C, H, OH-1minerale obe $\mu g/l$ -50200200200polycyclische aromatische0.20.20.2toolwaterstoffen $\mu g/l$ -0.050.10.1organochloorpesticiden totaal $\mu g/l$ -0.051.0bactenén van demediaan per-0.51.0coligroep (totaal)100 ml*20thermotolerante bactenénmediaan per				20	50	50	10 C	54
seleen $\mu g/l$ Se-10101kwik $\mu g/l$ Hg-0.30.30.3banum $\mu g/l$ Ba-1002001.00ryanide $\mu g/l$ Ba-1002001.00oppervlakte-actieve stoffendie reageren met methyleenblauw $\mu g/l$ 200-200met waterdamp vluchtige lenolen $\mu g/l$ 200-200200polycyclische aromatischekoolwaterstoffen-1-koolwaterstoffen $\mu g/l$ -0.20.20.2organochloorpestieden totaal $\mu g/l$ -0.050.10.1organochloorpestieden $\mu g/l$ 0.051.0bactenén van demeduaan per-0.51.0100 ml*coligroep (totaal)100 ml*20thermotolerante bactenénmeduaan per				30	30	50	-	5
kwik $\mu g/l$ Hg-0.30.3banum $\mu g/l$ Ba-1002001.00syanide $\mu g/l$ CN-50505oppervlakte-active stoffen-200-200die reageren met methyleenblauw $\mu g/l$ 200-200met waterdamp vluchtige fenolen $\mu g/l$ C, H, OH-1-minerale olie $\mu g/l$ -50200200polycyclische aromatische $\mu g/l$ -0.20.2organochloorpesticiden totaal $\mu g/l$ -0.050.1organochloorpesticiden $\mu g/l$ 0.05per afzonderlijke stof $\mu g/l$ 0.05bacternén van demediaan percoligroep (totaal)100 ml*20thermotolerante bacterienmediaan per			-	10	10	10	2 3	Ð
barum $\mu g/l$ Ba $-$ 1002001.00syanide $\mu g/l$ CN $-$ 505050oppervlakte-actieve stoffendie reageren met methyleenblauw $\mu g/l$ 200 $-$ 200met waterdamp vluchuge fenolen $\mu g/l$ C, H, OH $-$ 1 $-$ minerale olie $\mu g/l$ $-$ 5020020polycyclische aromatische $\mu g/l$ $-$ 0.20.2corganochloorpesticiden totaal $\mu g/l$ $-$ 0.050.1organochloorpesticiden totaal $\mu g/l$ $ -$ 0.05choline-esteraseremmers $\mu g/l$ $ 0.5$ 1.0bactenén van demediaan per $ -$ coligroep (totaal) 100 mi* 20 $ -$				0_3	0,3	L	-	
Value $\mu g/l$ CN=50505oppervlakte-actieve stoffen $\mu g/l$ CN=50505die reageren met methyleenblauw $\mu g/l$ 200-200met waterdamp vluchuge lenolen $\mu g/l$ C, H, OH-1-minerale olie $\mu g/l$ -50200200polycyclische aromatische $\mu g/l$ -0.20.2corganochloorpesticiden totaal $\mu g/l$ -0.050.1organochloorpesticiden $\mu g/l$ 0.05per afzonderlijke stof $\mu g/l$ 0.05bactenén van demediaan per-0.51.0coligroep (totaal)100 ml ⁴ 20				100	200	1.000	-	1.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					50	50		5
die reageren met methyleenblauw $\mu g/1$ 200 – 200 met waterdamp vluchtige fenolen $\mu g/1 C_{4} H_{4} O H$ – 1 – minerale olie $\mu g/1$ – 50 200 200 polycyclische aromatische koolwaterstoffen $\mu g/1$ – 0.2 0.2 organochloorpesticiden totaal $\mu g/1$ – 0.05 0.1 organochloorpesticiden totaal $\mu g/1$ – 0.05 0.1 organochloorpesticiden totaal $\mu g/1$ – 0.05 1.0 bactenen van de mediaan per coligroep (totaal) 100 ml ⁴ 20 – – thermotolerante bactenen mediaan per		Apr Cit						
The trade of trad			200	_	200	-	500	1
Inite fact traction for the fact that the product of the fact that the fact that the product of the fact th				1	_	5	10	1
minerale de $\mu g/l$ μ μ μ μ polycyclische aromatischekoolwaterstoffen $\mu g/l$ organochloorpesticiden totaal $\mu g/l$ μ organochloorpesticidenper afzonderbijke stof $\mu g/l$ μ <			-		200	200		1.00
koolwaterstoffen µg/1 - 0.2 0.2 organochloorpesticiden totaal µg/1 - 0.05 0.1 organochloorpesticiden		μg/i	-					
convariant μ_{e} :-0.1organochloorpesticiden totaal μ_{g}/l -0.050.1organochloorpesticiden-0.050.1per afzonderlijke stof μ_{g}/l 0.05choline-esteraseremmers μ_{g}/l -0.51.0bactenen van demediaan percoligroep (totaal)100 ml ⁴ 20thermotolerante bactenenmediaan per	· · · ·	- /1		0.7	0.7	0.2	-	
organochioorpesticiden lotal µg/1 – 0.05 off organochioorpesticiden off per afzonderbike stof µg/1 – – 0.05 t.0 bactenén van de mediaan per coligroep (totaal) 100 mi ⁴ 20 – – thermotolerante bactenén mediaan per			-			0.5	-	
per afzonderlijke stof µg/l - - 0.05 choline-esteraseremmers µg/l - 0.5 1.0 bactenen van de mediaan per coligroep (totaal) 100 ml* 20 - thermotolerante bactenen mediaan per	e .	μ <u>ε</u> /1	-	0.05	0.1			
per alzonderujke stol µg/1 - 0.5 1.0 choline-esteraseremmers µg/1 - 0.5 1.0 bactenén van de mediaan per coligroep (totaal) 100 ml* 20 - thermotolerante bactenén mediaan per					0.05	-		
bactenén van de meduaan per coligroep (totaal) 100 ml* 20 - = thermotolerante bactenén meduaan per	,		-	-		2.0	-	
coligroep (totaal) 100 ml ⁴ 20	holine-esteraseremmers	<i>µ</i> ھ/۱	-	60	1.0	2.0		
thermotolerante bactenén mediaan per			20		-	-	14	
1000			20	-	0.55			
					2.000		20.000	
	ran de coligroep	100 ml*	20	-	2.000	-	-0.000	
faecale streptococcen mediaan per 100 mit ^a 10 ~ 1.000	aecale streptococcen		10	-	1.000	-	10.000	

1

F.

Ł

ł

24

DUTCH QUALITY STANDARDS FOR FISH WATER

pH		°C	6.5 - 9.0 < 3
Temperature increase			
Suspended solids		mg/l	< 50
011			Not visible
Phosphate (P)		µg/1	< 200
Ammonium (N)		mg/l	< 0.8
BOD		mg/l	< 10
Oxygen (0,)		mg/l	> 6
Ammonia (N)		μg/1	< 20
Residual chlorine (HO	(1)	mg/l	< 5
Nitrite (N)		μg/1	< 300
Copper (Cu)		ug/l	< 30
7:00 (70)	w:	ug/l	< 200

1

1

[

 $\frac{1}{2}$

Ł

j.

1

EC STANDARDS FOR DRINKING WATER

		Desirable Level	Permissibl∈ Level
Color Turbidity Temperature °C pH Conductivity Chlorides Sulfates Calcium Magnesium Sodium Potassium Aluminum Hardness TDS Nitrates Nitrites Ammonium Kjehldahl-N Dissolved HC Phenolic comp. Borium Surface active compounds Iron Manganese Copper Zinc Phosphor Fluor Barium Silver	mg/1 PT/Co mg/1 SiO ₂ µS cm ⁻¹ mg/1 Cl mg/1 Cl mg/1 Cd mg/1 Cd mg/1 Nd mg/1 Cu µg/1 Cu µg/1 Cu µg/1 Cu µg/1 Cu µg/1 Cu µg/1 Cu µg/1 Cu µg/1 Cu µg/1 F ² 8-12°C 25-30°C µg/1 Ag	1 1 12 6.5 - 8.5 400 25 25 100 30 20 10 0.05 60 (minimum) 25 0.05 1000 1000 50 20 100 100 100 100 100 100 100	$\begin{array}{c} 20\\ 10\\ 25\\ 9.5 \end{array}$ $\begin{array}{c} 200\\ 250\\ 150\\ 12\\ 0.2 \end{array}$ $\begin{array}{c} 50\\ 150\\ 0.1\\ 0.5\\ 1\\ 10\\ 0.5 \end{array}$ $\begin{array}{c} 200\\ 200\\ 50\\ 3000\\ 500\\ 5000\\ 5000\\ 5000\\ 1500\\ 700\\ 10 \end{array}$
Toxic Substances	*	285	
Arsenic Cadmium Cyanides Chrome Mercury Nickel Lead Antimonium Selenium	µg/l As µg/l Cd µg/l CN µg/l Cr µg/l Hg µg/l Ni µg/l Pb µg/l Sb µg/l Se		50 5 50 50 1 50 50 10 10

Ē

E

. 1

P

ſj

[].

1

Ł

L

Ľ

ĺ

Ľ

L

1

ľ

90	-	10
-64(òf	×
0	e l	end
	Page	App

Ļ

E

Ľ

P

Į,

I,

Ľ

Ļ

Ľ

Ī

Ł.

Ŀ

Ł

L

S
ITATIONS
H
A
E
M
Ξ
끸
EFFLUENT
ш
2
E
WATER

Neth <u>mg/l</u> (Note 3)	7 30 1.2 < 50 (Note 4) 6.5-9
Saudi Arabia mg/l	25 150 15 0.1 8.0 6-9
India mg/1	15 250 50 20 10 0.5 6-8.5
India kg/1000 Ton Feed	10.5 14.0 7.0 0.35
World Bank kg/1000 m Feed (Note 2)	7.5 46.0 5.0 5.0 0.05 0.05 6-9
USA <u>kg/day</u> (Note 1)	27.4 18.9 0.04 8.6 6-9
	BOD COD NH ₃ -N TS3 Phenol Oil and Grease Sulfide PH

Notes: 1. Absolute values for direct discharge.

2. Average of allowable values for topping and cracking.

Values for receiving surface water.

4. EC standards are 25 mg/l.

SSR - PHASE I EWP RECHECKED DOCUMENT COMMENTS: 24,6,9 BY

1.11

Ľ

Į

RECOMMENDED ENVIRONMENTAL DESIGN CRITERIA

IMMISSION STANDARDS	CONC (ug/m	³) (Yearly	Average	/Daily Average)
X	00/1000 00/-			
CO 100	00/-		ì	
	00/500			SSR - PHASE I EWP
railiculais 1	00/ 500			RECHECKED
EMISSION ENGINEERIN	G DESIGN GU	IDELINES		COMMENTS:
so _x	1.0	g/MJ		1
		mg/MJ		//
	00	mg/m ³		вугдібід
WATER EFFLUENT LIMI	TATIONS CON	C (mg/1)		\mathcal{I}
BOD	15			
COD 2	50			
NH3-N	50			
TSS	50			
Phenol	1.0			
Oil and Grease	10			t)
Sulfide	0.5			<u>*</u>
рH	6-8.5			

\$

NOISE LIMITATIONS (sound pressure levels)

Inside plant (but at least one meter from 85 dB(A). equipment) : At nearest village : 50 dB(A).

