MER Ondergrondse opslag van CO\textsubscript{2} in Barendrecht

Deelrapport 1: Samenvattend hoofdrapport
(overzicht op hoofdlijnen van MER en alle bevindingen)
Initiatiefnemer
Shell CO₂ Storage B.V.
Den Haag
Geregistreerd in Den Haag, NL – Handelsregisternummer 27002688

Correspondentieadres
Shell CO₂ Storage B.V.
t.a.v. Barendrecht Ondergrondse CO₂ Opslag (BRT-OCO)
Postbus 28000, 9400 HH Assen, NL

Datum
December 2008

Projectleiding
mw. ir. M. Kuijper
Tel: 0592 – 364268
E-mail: margriet.kuijper@shell.com

Vergunningen
mw. J. Hadderingh
Tel: 0592- 364030
E-mail: jeannet.hadderingh@shell.com

Mediazaken
dhr. W. van de Wiel
Tel: 070 – 3778750
E-mail: wim.vandewiel@shell.com

Dit Milieueffectrapport is opgesteld door Haskoning Nederland B.V. in opdracht en onder verantwoordelijkheid van Shell CO₂ Storage B.V.

Inhoudelijke bijdragen zijn geleverd door onder meer de volgende bedrijven en instituten:
• Maatschappijen van de Shell Groep
• Maatschappijen behorende bij OCAP
• TNO, Utrecht
• Buisleidingenstraat Nederland, Roosendaal
• RAAP Archeologisch Adviesburo B.V., Amsterdam
• Noordelijk Akoestisch Adviesbureau B.V., Assen
• Haskoning Nederland B.V., Groningen
• Teboed B.V., Den Haag
• Oranjewoud B.V., Heerenveen

Uitgave: Shell CO₂ Storage B.V., Den Haag

Rapportnummer: EP200809225671

The copyright of this document is vested in Shell CO₂ Storage Company B.V. The Netherlands. All rights reserved. Neither the whole, nor any part of this document may be reproduced, stored in any retrieval system or transmitted in any form or by any means (electronic, mechanical, reprographic, recording or otherwise) without the prior written consent of the copyright owner.

© SHELL CO₂ STORAGE COMPANY B.V., THE NETHERLANDS
Inhoudsopgave

1. **Inleiding** ... 10
 1.1 Kader .. 10
 1.1.1. Overheidsbeleid .. 12
 1.1.2. Beleid van Shell als initiatiefnemer .. 14
 1.2 Voornemen: uitvoeren van een demonstratieproject ... 14
 1.3 Overheidstender ... 17
 1.4 M.e.r.-plicht voorgenomen activiteit ... 17
 1.5 De m.e.r.-procedure ... 19

2. **De voorgenomen activiteit** .. 22
 2.1 Inleiding .. 22
 2.2 Locatiekeuze .. 22
 2.2.1. Uitgangspunten ... 22
 2.2.2. Afweging ... 24
 2.2.3. Selectie ... 29
 2.3 Projectoverzicht .. 30
 2.4 Betrokken partijen .. 32
 2.5 Projectfasen ... 33
 2.5.1. Opslag in reservoirs .. 34
 2.5.2. Fasering in het project ... 35
 2.6 Projectplanning ... 37

3. **Beleids- en wettelijk kader** .. 40
 3.1 Inleiding ... 40
 3.2 Klimaatbeleid ... 40
 3.2.1. Inleiding en achtergrond ... 40
 3.2.2. Europa ... 40
 3.2.3. Rijk ... 41
 3.2.4. Regionaal: Provincie Zuid Holland / Regio Rotterdam Rijnmond 42
3.3 CCS (CO$_2$ capture and storage) .. 42
 3.3.1. Inleiding (vigerend beleid en toekomstig EU beleid) ... 42
 3.3.2. Europa.. 43
 3.3.3. Rijk .. 46
 3.3.4. Provincie Zuid-Holland .. 50
 3.3.5. Gemeente Barendrecht ... 51
3.4 Ruimtelijke ordening ... 51

4. Gebiedsbeschrijving en autonome ontwikkelingen .. 54
 4.1 Inleiding .. 54
 4.2 Gebiedskenmerken .. 54
 4.2.1. Deelgebied Havengebied ... 55
 4.2.2. Deelgebied leidingtracé .. 56
 4.2.3. Deelgebied Barendrecht .. 57
 4.2.4. Locatie Barendrecht .. 58
 4.2.5. Locatie Barendrecht-Ziedewij ... 58
 4.2.6. Ondergrond .. 59
 4.3 Ontwikkelingen ... 60
 4.4 Autonome ontwikkelingen .. 61

5. Technische beschrijving voorgenomen activiteit .. 64
 5.1 Inleiding .. 64
 5.2 De eigenschappen van CO$_2$.. 64
 5.2.1. Kenmerken en eigenschappen ... 64
 5.2.2. Onder welke omstandigheden kan CO$_2$ gevaarlijk worden? 67
 5.3 Het CO$_2$ zoals toegepast in het project .. 67
 5.4 CO$_2$-Bron .. 72
 5.5 Plot 16 compressiestation .. 73
 5.6 Transport van CO$_2$ per pijpleiding .. 77
 5.7 Locatie Barendrecht (BRT) .. 82
 5.8 Locatie Barendrecht-Ziedewij (BRTZ) ... 86
5.9 Reservoirs en putten ... 88
 5.9.1. Barendrecht ... 88
 5.9.2. Barendrecht-Ziedewij ... 89
5.10 Eindsituatie ... 90
 5.10.1. Stabiele eindsituatie .. 90
 5.10.2. Nazorg (gebruik en monitoring) 90
5.11 Bijzondere omstandigheden ... 91
 5.11.1. Calamiteitenscenario’s .. 92
 5.11.2. Grote, snelle lekkage .. 93
 5.11.3. Langzame, kleine lekkage ... 96
 5.11.4. Beheersmaatregelen ... 97
 5.11.5. Eventuele domino-effect in de Buisleidingenstraat 98
6. Alternatieven en varianten ... 100
 6.1 Inleiding ... 100
 6.1.1. Afbakening ... 100
 6.1.2. Indeling alternatieven en varianten 101
 6.2 Nulalternatief (referentiesituatie) .. 102
 6.3 Basisalternatief ... 103
 6.4 Voorkeursalternatief ... 104
 6.5 Hogere druk alternatief ... 105
 6.6 Varianten .. 107
 6.7 Niet geselecteerde varianten ... 109
 6.8 Meest milieuvriendelijk alternatief 109
7. Milieueffecten reguliere operationele omstandigheden 110
 7.1 Inleiding ... 110
 7.2 Overzicht toetsingscriteria .. 110
 7.3 Classificatie ... 112
 7.4 Effectbeschrijving tijdens normale operationele activiteiten 112
 7.4.1. Bodem ... 112
 7.4.2. Water ... 113
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4.3.</td>
<td>Ecologie</td>
<td>115</td>
</tr>
<tr>
<td>7.4.4.</td>
<td>Landschap en cultuurhistorie</td>
<td>116</td>
</tr>
<tr>
<td>7.4.5.</td>
<td>Archeologie</td>
<td>117</td>
</tr>
<tr>
<td>7.4.6.</td>
<td>Geluid</td>
<td>118</td>
</tr>
<tr>
<td>7.4.7.</td>
<td>Emissies</td>
<td>119</td>
</tr>
<tr>
<td>7.4.8.</td>
<td>Energie en CO₂-balans</td>
<td>120</td>
</tr>
<tr>
<td>7.4.9.</td>
<td>Verkeer en vervoer</td>
<td>122</td>
</tr>
<tr>
<td>7.4.10.</td>
<td>Externe veiligheid</td>
<td>122</td>
</tr>
<tr>
<td>7.4.11.</td>
<td>Afvalstoffen</td>
<td>124</td>
</tr>
<tr>
<td>7.5</td>
<td>Samenvatting milieueffecten bij voorkeursalternatief</td>
<td>125</td>
</tr>
<tr>
<td>7.5.1.</td>
<td>Milieueffecten tijdens de aanlegfase</td>
<td>125</td>
</tr>
<tr>
<td>7.5.2.</td>
<td>Milieueffecten tijdens de injectiefase</td>
<td>126</td>
</tr>
<tr>
<td>7.5.3.</td>
<td>Overige milieueffecten</td>
<td>126</td>
</tr>
<tr>
<td>8.</td>
<td>Milieueffecten ondergrondse CO₂-opslag</td>
<td>128</td>
</tr>
<tr>
<td>8.1</td>
<td>Inleiding</td>
<td>128</td>
</tr>
<tr>
<td>8.2</td>
<td>Huidige stand der techniek</td>
<td>129</td>
</tr>
<tr>
<td>8.3</td>
<td>Nieuwe elementen in dit project</td>
<td>130</td>
</tr>
<tr>
<td>8.4</td>
<td>Risicoanalyse</td>
<td>131</td>
</tr>
<tr>
<td>8.5</td>
<td>Conclusies</td>
<td>135</td>
</tr>
<tr>
<td>9.</td>
<td>Vergelijking van alternatieven</td>
<td>136</td>
</tr>
<tr>
<td>9.1</td>
<td>Inleiding</td>
<td>136</td>
</tr>
<tr>
<td>9.2</td>
<td>Afweging alternatieven en varianten</td>
<td>136</td>
</tr>
<tr>
<td>9.3</td>
<td>Meest milieuvriendelijk alternatief (MMA)</td>
<td>139</td>
</tr>
<tr>
<td>10.</td>
<td>De m.e.r.-procedure</td>
<td>140</td>
</tr>
<tr>
<td>10.1</td>
<td>Inleiding</td>
<td>140</td>
</tr>
<tr>
<td>10.2</td>
<td>Doelstellingen van de m.e.r.-procedure algemeen</td>
<td>140</td>
</tr>
<tr>
<td>10.2.1.</td>
<td>M.e.r.-procedure</td>
<td>140</td>
</tr>
<tr>
<td>10.2.2.</td>
<td>Betrokkenen</td>
<td>142</td>
</tr>
<tr>
<td>10.3</td>
<td>Bevoegde instanties en besluitvormingsprocedures</td>
<td>142</td>
</tr>
<tr>
<td>10.4</td>
<td>Relatie met bestaand instrumentarium</td>
<td>146</td>
</tr>
</tbody>
</table>
11. Leemten in kennis en monitoring

11.1 Inleiding

11.2 Leemten in informatie en kennis

11.2.1. Modellering mogelijke CO$_2$-migratie

11.2.2. Kansen en gevolgen

11.2.3. Zeer lange termijn effecten

11.2.4. Gedrag CO$_2$ bij snelle drukafname

11.2.5. Best Beschikbare Regelgeving (BBR)

11.3 Monitoringsplan

11.3.1. Aanlegfase

11.3.2. Operationele fase

11.3.3. Na afloop van de injectiefase

11.4 Evaluatie

11.5 Monitoring en (nood) reactieplan

11.6 Leereffectenplan

Literatuur: referentierapporten

Afkortingen en begrippen
Bijlagen
Bijlage 1 Bemalingsrapport
Bijlage 2 Natuuroots
Bijlage 3 Cultuurtechnisch rapport en bodemonderzoeken
Bijlage 4 Archeologie
Bijlage 5 Geluid
Bijlage 6 Externe veiligheid

Kaarten
Kaarten met de ligging van projectonderdelen
Kaart 1a Overzichtskaart west
Kaart 1b Overzichtskaart oost
Kaart 1c Plot 16
Kaart 1d Locatie Barendrecht
Kaart 1e Locatie Barendrecht-Ziedewij
Kaart 1f Overzicht kwetsbare gebieden
Kaart 1g/h/i Varianten nieuwe leiding

Kaarten met milieueffecten
Kaart 4a Ecologie west
Kaart 4b Ecologie oost
Kaart 5a Landschap en natuurhistorie west
Kaart 5b Landschap en natuurhistorie oost
Kaart 6a Archeologie west
Kaart 6b Archeologie oost
Kaart 7a Geluid Barendrecht
Kaart 7b Geluid Barendrecht
Kaart 7c Geluid Barendrecht-Ziedewij
Kaart 9a Externe veiligheid Plot 16
Kaart 9b Externe veiligheid leidingtunnel Beneluxplein 14 inch leiding
Kaart 9c Externe veiligheid leidingtunnel Beneluxplein 28 inch leiding
Kaart 9d Externe veiligheid leidingtunnel Groene Kruisweg 14 inch leiding
Kaart 9e Externe veiligheid leidingtunnel Groene Kruisweg 28 inch leiding
Kaart 9f Externe veiligheid Barendrecht
Kaart 9g Externe veiligheid Barendrecht-Ziedewij
Leeswijzer
Het Milieueffectrapport (MER) biedt de mogelijkheid op hoofdpunten, maar ook in detail, inzicht te krijgen in de milieueffecten van het project Ondergrondse opslag van CO₂ in Barendrecht. Dit betekent dat in de tekst van dit samenvattend hoofdrapport veelal een eerste beschrijving wordt gegeven, waarvoor verderop in deelrapporten 2 en 3 meer onderbouwing volgt. Hierdoor kan gemakkelijk een totaalloperzicht worden verkregen van alle onderdelen en de onderlinge relaties. Daar waar de lezer verdere onderbouwing wenst, kan deze in het verloop van het rapport gevonden worden.

Deze opzet is terug te vinden in de structuur van het MER. Deelrapport 1 vormt het hoofdrapport, waarin alle aspecten zijn samengebracht. In deelrapport 2 worden de milieueffecten afzonderlijk en in detail behandeld. De bijlagen bij deelrapport 2 beschrijven specialistische onderzoeken die zijn uitgevoerd voor dit project. Deelrapport 3 gaat in detail in op de aspecten welke met het gebruik van de diepe ondergrond te maken hebben, zoals de geologische structuren, de opslag van CO₂ en mogelijkheden voor monitoring. Hierbij wordt ook uitgebreid de onderbouwing van de locatiekeuze gegeven. Aan het MER zijn een kaartenbijlage en een publiekssamenvatting toegevoegd.

Deelrapport 1 Samenvattend hoofdrapport
(overzicht op hoofdlijnen van MER en alle bevindingen)

Deelrapport 2 Beschrijving milieueffecten
(beleid, effecten en classificatie per milieuthema)

Deelrapport 3 Ondergrondse opslag
(locatiekeuze, risicoanalyse en lekkagescenario’s ondergrond, monitoring)

Dit samenvattend hoofdrapport is opgebouwd uit elf hoofdstukken. Het eerste hoofdstuk geeft de noodzaak en achtergrond van het project weer. De functionele beschrijving van de verschillende onderdelen van het project komt in hoofdstuk 2 aan de orde, terwijl hoofdstuk 5 een meer technische beschrijving geeft. De tussenliggende hoofdstukken gaan in op het beleid (in hoofdstuk 3) en studiegebied van het geplande project (hoofdstuk 4). Hoofdstuk 6 geeft een beschrijving van de voorgenomen activiteiten, met daarbij de verschillende alternatieven en varianten, die in dit MER zijn onderzocht. De milieueffecten komen in rapport 2 per milieuspect uitgebreid aan de orde. Hoofdstuk 7 geeft een overzicht van de belangrijkste bevindingen. De afwegingen met betrekking tot de diepe ondergrond, vergen bijzondere aandacht. Hiervoor is rapport 3 bestemd. In hoofdstuk 8 worden de bevindingen hieruit samengevat. In hoofdstuk 9 worden alle bevindingen vergeleken en wordt bepaald wat in dit MER gezien wordt als het Voorkeursalternatief en het Meest Milieuvriendelijke Alternatief. Hoofdstuk 10 gaat in op de verdere procedures, waar dit MER onderdeel van uit maakt en de rol van het MER daarbij. Tot slot beschrijft hoofdstuk 11 met welke leemten in kennis rekening moet worden gehouden, hoe hiermee is omgegaan bij de bepaling van milieueffecten in dit MER en tot welke monitoringsactiviteiten dit leidt.
1. Inleiding

1.1 Kader

Initiatief

Shell Nederland Raffinaderij (SNR) heeft het initiatief genomen tot een project waarbij kooldioxide (CO₂) wordt opgeslagen in leeggeproduceerde gasreservoirs bij Barendrecht. Hiervoor is een samenwerkingsverband opgericht, waarin Shell en OCAP (bestaande uit Linde Gas en VolkerWessels) deelnemen. Shell heeft tevens de rechtspersoon Shell CO₂ Storage B.V. (SCS) opgericht voor de verdere uitvoering. OCAP heeft OCAP CO₂ Transport B.V. opgericht, in dit MER kortweg aangeduid als OCAP. Het project Ondergrondse opslag van CO₂ in Barendrecht wordt gezien als een demonstratieproject, waarbij CO₂, afkomstig van SNR in Pernis, achtereenvolgens in twee leeggeproduceerde gasvelden in Barendrecht wordt opgeslagen.

Achtergrond

De dampkring vormt een dunne en kwetsbare laag rondom de aarde. Het aantasten van de dampkring kan op termijn een bedreiging gaan vormen voor mensen, dieren en planten op aarde. De aantasting treedt onder meer op door menselijke activiteiten, waarbij broeikasgassen in de dampkring terechtkomen. De toenemende hoeveelheid CO₂ in de dampkring leidt (volgens een grote meerderheid van klimaatwetenschappers) tot het zogenaamde broeikaseffect, waardoor de temperatuur steeds verder zal toenemen. Beide grafieken in figuur 1.2 geven deze ontwikkelingen weer. Dit inzicht heeft er toe geleid dat steeds meer maatregelen worden genomen om de beïnvloeding van de dampkring door menselijk handelen, zoveel mogelijk te beperken. Opslag van CO₂ in de diepe ondergrond wordt gezien als een maatregel om de aantasting van de dampkring door stijgende CO₂-concentraties tegen te gaan.

CCS als middel om CO₂-uitstoot te beperken

CO₂ is één van de broeikasgassen. Het terugdringen van CO₂-emissies staat hoog op de politieke agenda van Nederland en Europa. Verschillende maatregelen om CO₂-uitstoot de doen afnemen worden overwogen. Het afvangen en opslaan van CO₂ in lege gasvelden wordt hierbij in Nederland en ook mondial gezien als een kansrijke mogelijkheid gezien. Het afvangen en opslaan van CO₂ wordt veelal aangeduid met CCS, de afkorting van de Engelse term Carbon dioxide Capture and Storage.
Bestaande ervaring met CO₂-opslag

Op wereldwijd schaal bestaat reeds ruime ervaring met het injecteren van CO₂ in de diepe ondergrond, met name in reservoirs, met tot doel het vergroten van de productie van olie door stuwing met CO₂. Dit proces wordt ‘enhanced oil recovery’ (EOR) genoemd. Voor het vergroten van gasproductie is het injecteren van CO₂ minder effectief, aangezien het CO₂ zal gaan mengen met het aanwezige gas en daardoor de kwaliteit van het geproduceerde gas afneemt. Sinds 1996 zijn er wereldwijd een (beperkt) aantal projecten gestart, waarbij CO₂ permanent wordt opgeslagen met als doel de reductie van CO₂-emissies. Een overzicht van CO₂-opslagprojecten is opgenomen in appendix 1 van deelrapport 3.

Leeggeproduceerde gasvelden

Leeggeproduceerde gasvelden zijn aantrekkelijke locaties voor de opslag van CO₂ omdat er veelal nog infrastructuur aanwezig is en door eerdere gaswinning de geologie van deze reservoirs tot in detail bekend is. Daarnaast zijn lege gasvelden in principe geschikt voor CO₂-opslag, omdat ze al miljoenen jaren aardgas hebben kunnen vasthouden.

Barendrecht

In West-Nederland bestaat nu een goede gelegenheid voor een demonstratieproject. Nabij Barendrecht doet zich de uitzonderlijke combinatie voor van een beschikbare bron waar CO₂ in chemisch zeer zuivere vorm reeds wordt afgevangen, nabij een leeggeproduceerd gasveld, waarvan de putten nog niet zijn ingesloten en dus nog bruikbaar zijn.

Figuur 1.1. De locatie Barendrecht met de Gasbehandelingsinstallatie.
1.1.1. Overheidsbeleid

Duurzaam Milieu 2020

Eén van de peilers van het Nederlandse regeerakkoord voor 2007-2011 van 7 februari 2007 is een Duurzaam Milieu. Hierbij zijn beleidsdoelen voor Nederland met betrekking tot energie vastgesteld. Bij elkaar zullen deze maatregelen, in vergelijking met 1990, volgens planning in 2020 resulteren in een vermindering van broeikasgasuitstoot met 97 miljoen ton CO\textsubscript{2} per jaar (afgekort met Mton CO\textsubscript{2} per jaar). CO\textsubscript{2}-opslag wordt genoemd als één van de maatregelen voor het behalen van de gewenste doelstelling.

CCS kan een belangrijke bijdrage leveren aan de reductie van CO\textsubscript{2}-emissies. Hiervoor is voldoende capaciteit in bijvoorbeeld leeggeproduceerde gasvelden nodig. Tot circa 2030, zal onder land (onshore) in Nederland naarmate verwachting circa 1.600 Mton capaciteit beschikbaar komen. Dit is exclusief het Groningenveld, aangezien dat nog veel langer gas zal produceren. Indien de leeggeproduceerde gasvelden geschikt zijn voor de opslag van CO\textsubscript{2}, kan een belangrijk deel van de CO\textsubscript{2}-reductie met behulp van CCS gerealiseerd worden. In het Nederlandse beleid wordt rekening gehouden met een reductiebijdrage door toepassing van CCS van 4 Mton CO\textsubscript{2} per jaar.
Figuur 1.2. Voorbeelden van meetreeksen waaruit blijkt dat zowel de temperatuur (bovenste grafiek) als de concentratie CO\(_2\) (onderste grafiek) de afgelopen tientallen jaren toeneemt. Het wereldwijde effect is in beeld gebracht op locaties waar relatief weinig locale bronnen aanwezig zijn.

Figuur 1.2 geeft twee voorbeelden van meetreeksen waaruit blijkt dat zowel de temperatuur als de concentratie CO\(_2\) in de atmosfeer de afgelopen decennia is toegenomen. De onderstaande figuur 1.3 geeft een prognose aan van de toenemende CO\(_2\)-uitstoot wereldwijd in de periode van 2000 tot 2100. Zonder maatregelen zou de uitstoot toenemen van circa 25 Gton CO\(_2\) in 2000 tot meer dan 125 Gton CO\(_2\) in 2100 (Gton staat voor Giga ton, wat miljard ton betekent). In de figuur is aangegeven dat beperking van de CO\(_2\)-uitstoot mogelijk is door:

- Efficiënter om te gaan met energie (energiezuinige apparatuur, bewust omgaan met energiegebruik).
- Hernieuwbare energiebronnen te gebruiken (zoals gebruik van zonne-energie of windenergie).
- CO\(_2\)-afvang en -opslag toe te passen.

Figuur 1.3 De mogelijke rol van CCS in een strategie om de CO\(_2\)-uitstoot te verminderen – Bron: Ecofys 2004 / GESTCO.
Reductie broeikasgassen
Op slag van CO₂ past daarmee in de lijn van het overheidsbeleid, om de uitstoot van broeikasgassen te reduceren. Dit is zowel een Nederlands als Europees beleid, terwijl op mondiaal niveau via de Kyoto-verdragen ambities zijn vastgelegd. CCS is een prominent onderdeel in het programma “Schoon en Zuinig” ter aanvulling van energie-efficiënte verbeteringen en gebruik van duurzame energie.

Tender procedure
De overheid heeft in 2007 een tenderprocedure uitgeschreven, met als doel projecten voor CO₂-opslag te stimuleren. De tender is uitgeschreven door SenterNovem en wordt gefinancierd door het ministerie van VROM. Het gaat om het financieren van CO₂-opslagprojecten van relatief geringe omvang, waarbij minimaal 2 miljoen ton CO₂ in 10 jaar wordt opgeslagen (zie paragraaf 1.3).

1.1.2. Beleid van Shell als initiatiefnemer
SNR heeft het initiatief genomen tot dit demonstratieproject. Voor Shell vormt de afvang en opslag van CO₂ een belangrijke technologische en klimatologische ontwikkeling voor de toekomst.

SNR heeft nabij Pernis een aantal fabrieken en installaties waar CO₂ wordt uitgestoten. Om ervoor te zorgen dat deze fabrieken ook in de toekomst operationeel kunnen blijven, is het van belang de mogelijkheden van CO₂-afvang en opslag te verkennen.

De Nederlandse Aardolie Maatschappij (NAM) produceert gas uit een groot aantal relatief kleine velden. Het is de bedoeling dat de NAM de beide reservoirs en kennis overdraagt aan Shell CO₂ Storage B.V. (SCS) voor de uitvoering van het demonstratieproject. De komende jaren zullen deze kleine velden geleidelijk leeg raken. Zolang de reservoirs nog toegankelijk zijn, kunnen verschillende hergebruikfuncties worden overwogen. Het is van belang een beslissing te nemen over de toekomst van een leeggeproduceerd gasreservoir voordat dit wordt afgesloten. Nadat een leeggeproduceerd reservoir eenmaal is afgesloten, leidt het opnieuw aanboren van het reservoir tot additionele kosten en technische vraagstukken. Dit wordt mede veroorzaakt doordat in het leeggeproduceerde reservoir een veel lagere druk heerst dan in de omgeving op deze diepte.

1.2 Voornemen: uitvoeren van een demonstratieproject
Opzet van het project
SCS heeft het voornemen in de lege gasvelden van de locatie Barendrecht en de locatie Barendrecht-Ziedewij chemisch zuiver CO₂, afkomstig van de Shell raffinaderij in Pernis, op te slaan in de diepe ondergrond. Met behulp van een nieuw aan te leggen ondergrondse pijpleiding zal het CO₂ vanaf de raffinaderij naar de injectielocaties worden getransporteerd om daar permanent te worden opgeslagen.
Het project bestaat uit twee delen:

- **Deel 1:** Injectie van ongeveer 0,8 miljoen ton CO\(_2\) in het kleinere reservoir bij de locatie Barendrecht, vanaf begin 2011 gedurende bijna drie jaar.
- **Deel 2:** Injectie van ongeveer 9,5 miljoen ton CO\(_2\) in het grotere reservoir bij de locatie Barendrecht-Ziedewij, gedurende de daaropvolgende 25 jaar.

Projectoverzicht CO\(_2\) opslag

H\(_2\) productie Pernis:
Over 930 Kton ton pure CO\(_2\)

Jaarlijks: 150 Kton CO\(_2\) naar de (frisdrank)industrie

Winter: injectie 400 Kton CO\(_2\)
in Barendrecht veld

Zomer: 380 Kton CO\(_2\) naar de kassen

Figuur 1.4: Overzicht CO\(_2\)-productie en levering.

Doelstelling demonstratieproject

Het project ‘Ondergrondse opslag van CO\(_2\) in Barendrecht’ is een demonstratieproject, aangezien bekende technieken worden toegepast. Dit wordt nader beschreven in hoofdstuk 8 van dit rapport en in appendix 1 van deelrapport 3 over de ondergrondse opslag. De nadruk ligt op de demonstratie van de opslag van CO\(_2\), maar daarbij zijn ook additionele leerэффектen geïdentificeerd (zie onderstaand).
Het doel van het demonstratieproject is tweeledig:

- Het project beoogt te voorkomen dat CO₂ naar de atmosfeer wordt uitgestoten, door CO₂ bij een bestaande bron af te vangen en een permanente opslag in de diepe ondergrond te realiseren.
- Daarnaast heeft het project tot doel, bestaande en bewezen technieken uit de olie- en gaswinning toe te passen en hiermee aan te tonen dat opslag van CO₂ veilig kan plaatsvinden.

Leereffecten

De opslag van CO₂ in de leeggeproduceerde gasvelden van Barendrecht en Barendrecht-Ziedewij wordt als veilig gezien. De leereffecten hebben dan ook niet zoveel betrekking op de opslag van CO₂ zelf, maar met name op de monitoring en niet-technische aspecten.

Er wordt een monitoringprogramma opgesteld, waarmee de hoeveelheid en kwaliteit van het geïnjecteerde gas worden bijgehouden. Tevens worden druk, temperatuur en gedrag in het reservoir gemeten. Vergelijkbare metingen zijn bekend uit de olie- en gasindustrie. De metingen dienen voor de controle van het opslagproces, maar tevens ter verantwoording van de totale hoeveelheid niet-geëmitteerde CO₂. Dit laatste is van belang omdat vergoeding voor de niet-uitgestoten CO₂ via het emissiehandelssysteem een belangrijk leereffect is voor het project.

Voor andere niet-technische leereffecten richt dit demonstratieproject zich met name op het genereren van nieuwe kennis omtrent onder meer de economische, organisatorische, juridische en maatschappelijke effecten.

Doordat eerst een klein veld wordt gebruikt en daarna een veel groter, geeft dit de unieke mogelijkheid om in betrekkelijk korte tijd aan te tonen dat CO₂-opslag veilig en verantwoord is, alvorens wordt overgegaan naar een groter veld. In het kleine veld kunnen in een korte periode alle fasen die bij de opslag van CO₂ horen (kortweg de aanleg, injectie en sluiting), worden gevolgd. Zo kan de al bestaande kennis en ervaring verder uitgebreid worden.

Lange termijn

Het uitgangspunt is het definitief opslaan van CO₂. Het wordt dus niet opgeslagen met de bedoeling het in de toekomst eventueel weer uit het reservoir te halen. Dit betekent dat rekening moet worden gehouden met een opslagperiode van waarschijnlijk vele miljoenen jaren. Dit in tegenstelling tot de periode van de CO₂-injectie, die beperkt is tot in totaal circa 25 jaar. Binnen het project wordt daarom aangegeven welke lange termijn effecten kunnen optreden en hoe omgegaan kan worden met een zo langdurige opslagperiode.
1.3 Overheidstender

Tender voor bijdrage van de overheid

Voor dit project is een ondersteuning van de overheid beschikbaar. Het MER houdt zich in het algemeen niet bezig met de financiële aspecten van een project. Voor het afvangen, transporteren en opslaan van CO₂ geldt echter dat dit in de huidige situatie als niet rendabel ingeschat wordt. Dit betekent dat zonder aanvullende financiering een demonstratieproject niet goed uitvoerbaar is. De overheid hecht er belang aan de opslag van CO₂ te stimuleren, voor de realisatie van haar eigen doelstelling met betrekking tot CO₂-reductie. Daarnaast is het van belang duidelijkheid te krijgen over een aantal juridische aspecten (waaronder de overdrachtprocedure na beëindiging van de CO₂-opslag), die nog niet goed zijn vastgelegd. Hierover kunnen in een specifiek project afspraken gemaakt worden. Het rijk heeft daarom besloten een financiële bijdrage te leveren aan demonstratieprojecten. Hiervoor heeft SenterNovem namens het ministerie van VROM begin 2007 een tender uitgebracht, waarbij meerdere marktpartijen hebben kunnen inschrijven.

Randvoorwaarden

De gunningprocedure heeft eind 2008 geleid tot een gunningbesluit. In de oorspronkelijke tenderprocedure zijn voorwaarden opgenomen, waaronder:

- De opslag vindt bij voorkeur plaats onder land (onshore).
- Opslag van minimaal 2 Mton CO₂ in 10 jaar.
- Het CO₂ dient minimaal 99% puur te zijn.
- Het project gaat zo snel mogelijk van start (op korte termijn is duidelijkheid nodig over de bruikbaarheid van de gasreservoirs).
- De leereffecten zullen door de initiatiefnemers gedurende 10 jaar via rapportages beschikbaar worden gemaakt.

Met het project CO₂-opslag in Barendrecht willen de overheid en de initiatiefnemers een bijdrage leveren aan de implementatie van het duurzaamheidakkoord (VROM, november 2007). In dit akkoord is onder andere afgesproken de CO₂-uitstoot in 2020 met 30% te verlagen ten opzichte van de emissie in 1990.

1.4 M.e.r.-plicht voorgenomen activiteit

Een milieueffectrapportage procedure (m.e.r.) is een hulpmiddel bij de besluitvorming over grote projecten, met als doel om in de besluitvorming het milieubelang een volwaardige rol te laten spelen. In het resulterende Milieu Effect Rapport (MER) worden op een samenhangende, objectieve en systematische wijze de milieueffecten beschreven, die naar verwachting zullen optreden als gevolg van de voorgenomen activiteit en de mogelijke alternatieven.
Uit de Wet milieubeheer (Wm) volgt dat voor de vergunningsaanvraag van activiteiten die mogelijk belangrijke nadelige effecten kunnen hebben voor het milieu, een MER moet worden gemaakt. In het Besluit milieueffectrapportage 1994 (Besluit m.e.r.) zijn de activiteiten genoemd waarvoor een m.e.r.-procedure verplicht is.

CO₂ dient in algemene zin, en gezien de afwezigheid van gevaarlijk componenten, in de bestaande Europese en Nederlandse wet- en regelgeving als een (niet-gevaarlijke) afvalstof te worden beschouwd. Deze kwalificatie bepaalt mede de MER-plichtigheid van het voornemen op basis van het Besluit m.e.r.

Het Besluit vermeldt (nog) niet expliciet iets over CO₂-opslag. Momenteel is de MER-plicht voor de opslag van CO₂ gebaseerd op de kwalificatie van CO₂ als afvalstof. Er bestaat een MER-plicht voor de activiteiten en besluiten genoemd als categorie C in het besluit MER. De opslag van gevaarlijke en niet-gevaarlijke afvalstoffen in de diepe ondergrond valt onder activiteiten van de categorie C. Volgens de regelgeving moet voor het in de diepe ondergrond brengen van gevaarlijke stoffen altijd een MER worden gemaakt. Voor niet-gevaarlijke stoffen zoals CO₂ geldt de MER-plicht als de capaciteit van de bedoelde inrichting groter is dan 500.000 m³.

<table>
<thead>
<tr>
<th>Categorie</th>
<th>Activiteiten</th>
<th>Gevallen</th>
<th>Plannen</th>
<th>Besluiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>C18.2</td>
<td>De oprichting van een inrichting bestemd voor de verbranding, de chemische behandeling, het storten of het in de diepe ondergrond brengen van gevaarlijke afvalstoffen.</td>
<td>De structuurvisie, bedoeld in de artikelen 2.1, 2.2, 2.3 en 5.1 van de Wet ruimtelijke ordening, en het plan, bedoeld in de artikelen 3.1 en 3.6, eerste lid, onderdelen a en b, van die wet.</td>
<td>De besluiten waarop afdeling 3.4 van de Algemene wet bestuursrecht en afdeling 13.2 van de wet van toepassing zijn.</td>
<td></td>
</tr>
<tr>
<td>C18.5</td>
<td>De oprichting van een inrichting bestemd voor het storten of het in de diepe ondergrond brengen van niet-gevaarlijke afvalstoffen, niet zijnde baggerspecie.</td>
<td>In gevallen waarin de activiteit betrekking heeft op een inrichting waarin 500.000 m³ of meer niet-gevaarlijke afvalstoffen wordt gestort of opgeslagen.</td>
<td>De structuurvisie, bedoeld in de artikelen 2.1, 2.2, 2.3 en 5.1 van de Wet ruimtelijke ordening, en het plan, bedoeld in de artikelen 3.1 en 3.6, eerste lid, onderdelen a en b, van die wet.</td>
<td>De besluiten waarop afdeling 3.4 van de Algemene wet bestuursrecht en afdeling 13.2 van de wet van toepassing zijn.</td>
</tr>
</tbody>
</table>

Wanneer CO₂ in toekomstige, op CO₂-opslag toegespitste regelgeving niet meer als afvalstof wordt gekwalificeerd, kan de MER-plicht ter discussie komen. Desondanks hecht de initiatiefnemer veel waarde aan het MER-traject omdat deze mede zal bijdragen aan de benodigde basisgegevens, het gewenste leereffect en de publieke acceptatie.

2 Artikel 7.2, eerste lid Wm.
Het MER is bedoeld ter onderbouwing van de milieuvergunningen voor de voorgenomen activiteiten in zowel deel 1 (injectie bij de locatie Barendrecht) als deel 2 (injectie bij locatie Barendrecht-Ziedewij), maar beschrijft alle componenten die met de opslag te maken hebben. Afhankelijk van de ervaringen zal voorafgaand aan deel 2 van het project een evaluatie en eventueel aanvulling plaatsvinden. Het MER is tevens te beschouwen als plan-MER en bevat derhalve de ruimtelijke onderbouwing voor de bouw aanvraag voor compressiefaciliteiten en verandering van de plaatselijke bestemming bij de injectielocaties en langs het leidingtracé. Ook voor de benodigde instemmingen in het kader van de mijnbouwwetgeving (zoals Opzlaagplan) zal het MER de basisinformatie bevatten.

Tegelijk met het MER zullen de aanvragen voor de vergunningen in de zin van onder meer de Wet milieubeheer en de Mijnbouwwet worden ingediend. Deze vergunningaanvragen betreffen de activiteiten in deel 1. Hierbij zal een coördinatieprocedure worden nagestreefd.

1.5 De m.e.r.-procedure

Voor het project Ondergrondse Opslag van CO₂ in Barendrecht wordt de reguliere m.e.r. procedure gevolgd. Hoofdstuk 10 beschrijft deze procedure voor dit project. Er zijn vier aspecten die de procedure voor dit project bijzonder maken:

- De richtlijnen voor het MER zijn mede gebaseerd op de eerder uitgevoerde Algemene Milieu Effecten Studie CO₂ Opslag (AMESCO).
- Er dient rekening gehouden te worden met zowel plan-MER als Besluit-MER aspecten.
- Het project wordt in twee delen uitgevoerd, waarbij voor de start van het tweede deel een actualisatie van het MER zal plaatsvinden.
- De zeer lange termijn (permanente opslag in diepe ondergrond) waarmee rekening moet worden gehouden.

Deze aspecten worden onderstaand nader toegelicht.

Richtlijnen

In de Richtlijnen is aangegeven dat deze niet zelfstandig leesbaar zijn, maar in combinatie moeten worden gezien met het AMESCO-rapport, inclusief het advies hierover van de Commissie voor de m.e.r. en de startnotitie. Dit wordt onderstaand nader toegelicht.

3 Een gecoördineerde behandeling van de benodigde besluiten kan plaats hebben via de bestaande aanhoudings- en coördinatieregelingen van o.m. de Wet milieubeheer, de toekomstige Wet algemene bepalingen omgevingsrecht (Wabo), de Wet samenhangende besluiten Awb of de nieuwe Rijkscoördinatieregeling.
AMESCO
Voorafgaand aan deze eerste m.e.r.-procedure voor een CO₂-opslag project in Nederland, is een generieke studie uitgevoerd. In juli 2007 is de Algemene Milieu Effecten Studie CO₂-opslag (AMESCO) afgerond [AMESCO, 2007]. In de AMESCO studie heeft een consortium van NAM, Nogepa, VROM, de provincies Groningen, Drenthe, Friesland en Zuid-Holland, SEQ, Essent, Electrabel, Eneco en het Staatstoezicht op de Mijnen een eerste verkenning laten uitvoeren naar de effecten van CO₂-opslag en de wijze waarop dit in een MER kan worden beschreven.

De Commissie voor de m.e.r. is gevraagd een oordeel te geven over de bevindingen van AMESCO. Dit heeft geleid tot een advies van de Commissie [Commissie, 2007]. Voor het huidige project wordt geraadpleegd aan de bevindingen van AMESCO en het hierop gebaseerde advies van de Commissie. Inmiddels is begin 2008 het rapport uit het Engels vertaald naar het Nederlands. Bij de Nederlandse versie is het advies van de Commissie als bijlage toegevoegd.

Startnotitie
De m.e.r.-procedure voor dit project is gestart met het indienen van de startnotitie in december 2007, bij het coördinerend bevoegd gezag, de provincie Zuid-Holland. In de startnotitie heeft de initiatiefnemer informatie verschaf over wat, hoe, waar en waarom van het voorgenomen plan om CO₂ op te slaan in de leeggeproduceerde gasvelden van Barendrecht. De startnotitie heeft ter inzage gelegen en is zowel toegelicht tijdens publieke informatiebijeenkomsten in Barendrecht (5 februari en 16 april 2008) als aan de Gemeenteraad van Barendrecht (13 februari 2008).

Richtlijnen
Het bevoegd gezag heeft de richtlijnen voor het MER opgesteld. Hiervoor is gebruik gemaakt van het advies van de Commissie voor de m.e.r. De Commissie heeft rekening gehouden met inspraak-reacties, de voorgestelde aanpak in de startnotitie en de bevindingen in het kader van AMESCO. De richtlijnen van het MER sluiten aan op zowel het AMESCO rapport als het advies van de Commissie.

Voor het opstellen van het MER dient zodoende rekening gehouden te worden met:

- AMESCO, benoeming te onderzoeken onderdelen in een projectspecifiek MER.
- Advies van de Commissie voor de m.e.r. op basis van de Engelstalige versie van AMESCO, vooral hoofdstuk 3 met aanbevelingen voor een toekomstig MER.
- Startnotitie, waarin de uit te werken onderdelen worden benoemd.
- Richtlijnen.

Plan-MER en Besluit-MER
Sinds september 2006 kent de Nederlandse m.e.r.-regelgeving de verplichting om bij een aantal (ruimtelijke) plannen en programma’s een plan-MER op te stellen. Het doel van een plan-m.e.r. is ervoor te zorgen dat bij strategische keuzen, zoals over locaties voor woningbouw, locaties voor bedrijventerreinen en in te zetten technieken, het milieubelang volwaardig afgewogen kan worden op basis van goede informatie.
In de Wm (artikel 14.4b) is geregeld dat in het geval voor een activiteit gelijktijdig zowel een m.e.r.-plichtig besluit als een m.e.r.-plichtig plan wordt voorbereid, het besluit-MER de kapstok voor beiden kan zijn. Dit onder meer omdat een besluit-MER de ‘zwaarste’ procedure kent door meer waarborgen. Dit is alleen zo als het plan uitsluitend wordt voorbereid met het oog op de inpassing van die activiteit in dat plan. Als voorbeeld is in de wetsgeschiedenis opgenomen dat voor een stortplaats een Wm-vergunning wordt voorbereid en dat tegelijkertijd een streekplan of bestemmingsplan wordt gemaakt. In dat plan wordt de stortplaatslocatie dan bestemd. Dan kan dus worden volstaan met het maken van een besluit-MER (Faqs, website Commissie voor de m.e.r.).

Bij de indiening van de startnotitie is bovenstaande ter sprake gebracht, hetgeen tevens is verwoord in de Richtlijnen. Het onderwerp is aan de orde geweest gedurende het vooroverleg rond het MER. In het besluit-MER wordt aldus aandacht besteed aan afwegingen, die in een plan-MER plaatsvinden. In dit MER is dit uitgewerkt, door specifiek aandacht te besteden aan het proces van locatieweuzen (zie hoofdstuk 2 van het samenvattend hoofddrapport en hoofdstuk 2 van deelrapport 3).

Actualisatie MER bij deel 2

In het MER worden de activiteiten en mogelijke effecten van zowel deel 1 met injectie bij de locatie Barendrecht, als van deel 2 met injectie bij de locatie Barendrecht-Ziedewij beschreven. Bij de start van deel 2 vindt evaluatie plaats van de bevindingen uit de injectie bij de locatie Barendrecht. Indien zich hier geen onverwachte ontwikkelingen hebben voorgedaan, zal met deel 2 worden vervolgd. Daar waar nodig zal een actualisatie van het MER plaatsvinden (gekoppeld aan de dan te volgen Wm-procedure).

Zeer lange termijn (permanente opslag in diepe ondergrond)

Het MER gaat over het algemeen over de bovengrondse effecten of effecten in de relatief ondiepe ondergrond. Voor effecten op de ondergrond wordt meestal tot maximaal circa 200 meter diepe gekeken. Dit wordt veelal aangeduid als de biosfeer, omdat in dit gedeelte leven mogelijk is of een directe invloed op levensvormen mogelijk is. In dit MER wordt ook nadrukkelijk naar de effecten van opslag in de diepe ondergrond gekeken. Zowel de injectie als de lange termijn opslag krijgen speciale aandacht. De opslag wordt gezien als permanent en staat mogelijk onder invloed van zeer trage processen in de diepe ondergrond. De effecten en mogelijke risico’s worden apart beschreven in dit MER.

Opstellen van het MER

Het MER is in opdracht van SCS opgesteld door Haskoning Nederland B.V. Meerdere partijen zijn betrokken geweest bij het in beeld brengen van milieueffecten.
2. De voorgenomen activiteit

2.1 Inleiding
Het voornemen is een demonstratieproject uit te voeren, waarbij CO₂ wordt afgevangen, getransporteerd en permanent wordt opgeslagen in leeggeproduceerde gasreservoirs. Dit hoofdstuk beschrijft hoe is gekomen tot de locatiekeuze, welke deelaspecten onderdeel uitmaken van dit project, de betrokken organisaties en de tijdsplanning. Hoofdstuk 5 gaat in meer detail in op de technische aspecten van het project.

2.2 Locatiekeuze
Onderstaand wordt beschreven hoe gekomen is tot de keuze voor de reservoirs van de locatie Barendrecht en Barendrecht–Ziedewij. Uitgebreider komt deze keuze aan bod in hoofdstuk 2 van deelrapport 3.

2.2.1. Uitgangspunten
Voor het demonstratieproject is een locatie gezocht, waar een CO₂-bron en een opslagreservoir beschikbaar zijn. Daarbij zijn de volgende drie randvoorwaarden gehanteerd:

- De opslag dient op een veilige manier plaats te vinden.
- Een opslagactiviteit dient kosteneffectief plaats te vinden.
- Het demonstratieproject dient te voldoen aan de voorwaarden uit de overheidstender.

Deze drie randvoorwaarden zijn leidend geweest bij de locatiekeuze. Onderstaand wordt dit nader toegelicht.

Veilige opslag
Voor veilige opslag van CO₂ is het van belang dat het opgeslagen CO₂ niet ontsnapt uit de ondergrond en in de ondiepe ondergrond of in de dampkring terechtkomt. Deze veiligheidsconditie geldt voor de huidige bewoners nabij de reservoirs, maar ook voor toekomstige bewoners. Het is de bedoeling dat op termijn de putten kunnen worden afgesloten en er geen beperking geldt voor het gebruik van de omgeving. Bij het opslaan van CO₂ moet er dan ook rekening worden gehouden met de mogelijkheid dat ook als dit plaatsvindt onder een onbewoond gebied, dit in de komende eeuwen wel bewoond kan worden en er mogelijk een gehele stad op gebouwd wordt. Dit betekent dat de veiligheid onafhankelijk van het huidige gebruik en bewoning nabij de locatie gewaarborgd dient te worden. Daarmee is de huidige bewoning niet een criterium bij de selectie van de velden. De ondergrondse structuren en de geschiktheid van deze structuren zijn bepalend bij de keuze van veilige CO₂-opslag.
MER Ondergrondse opslag van CO₂ in Barendrecht

Voor een veilige opslag van CO₂ wordt uitgegaan van (bijna) leeggeproduceerde gasreservoirs. Opslag in andere reservoirs dan leeggeproduceerde gasvelden, bijvoorbeeld in diepe waterlagen (aquifers)² is buiten beschouwing gelaten. De gasreservoirs worden gezien als een veilige vorm van CO₂-opslag, aangezien in deze ondergrondse structuren het aardgas opgesloten heeft gezeten en deze reservoirs in omvang en gedrag goed bekend zijn. Bij de leeggeproduceerde gasreservoirs wordt in het bijzonder aandacht besteed aan de putten. Deze dienen toegankelijk te zijn en bij voorkeur nog niet afgesloten.

Leeggeproduceerd gasveld

Een leeggeproduceerd gasveld is niet een helemaal leeg gasveld. Het bevat nog een resterende hoeveelheid gas, maar onder zeer lage druk, zodat het niet meer economisch te produceren is. In de poriën van het reservoirgesteente kunnen stoffen als aardgas, water of zoals bij dit voornemen CO₂ worden opgeslagen. Vanuit de winning en opslag van aardgas is veel kennis voorhanden over stoffen in de ondergrond, hun gedrag en de reactie van de bodem op veranderingen in druk.

Stabiliteitverbetering door opslag van CO₂

Het opnieuw vullen van leeggeproduceerde gasvelden heeft een gunstige invloed op de stabiliteit van de diepe ondergrond. De druk op de diepte van het reservoir wordt weer terug gebracht naar (bijna) de omgevingsdruk. Hierdoor worden de lokale spanningen ten gevolge van drukverschillen weggenomen en de oorspronkelijke druk-situatie hersteld. Hierdoor is de eindsituatie in een "leeg" aardgasveld (waar een behoorlijke onderdruk is ten opzichte van de directe omgeving) dus minder stabiel dan de situatie in een met CO₂ gevuld gasveld.

Reservoordruk en omgevingsdruk

Het reservoir wordt opgevuld met CO₂ tot een onderdruk van 8 bar vergeleken met de originele druk op referentiediepte van het reservoir van het oorspronkelijke gasreservoir. De oorspronkelijke druk is iets hoger dan de hydrostatische druk van een waterdoorvarend reservoir. Een onderdruk van 4 bar zou nodig zijn om te verkomen dat CO₂ via een open verbinding door de afdekende laag, bijvoorbeeld via een put, in een circa 100 meter hoger liggende diepte zou kunnen stromen. In Barendrecht is dit het eerst volgende reservoir boven de afdekende laag. In dit geval zal de druk van een CO₂ kolom in deze open verbinding gelijk of minder zijn dan de hydrostatische druk van het boven liggende reservoir. Hierbij wordt een veiligheid marge van nog een keer 4 bar opgeteld.

Kosteneffectief

CO₂-opslag zal in de toekomst toegepast kunnen worden indien het kosteneffectief kan plaatsvinden. Dit betekent dat de kosten voor afvang, transport en opslag opgewogen tegen de baten (veelal uitgedrukt via emissierechten voor CO₂-uitstoot). De kosten voor dit demonstratieproject worden mede bepaald door de bestaande afvang van CO₂ en de transportafstand. Voor de afvang van CO₂ is het belangrijk dat de bron een chemisch zo zuiver mogelijk CO₂ produceert, zodat geen aanvullende scheidingsprocedures meer nodig is. Gebruik maken van de bestaande afvanginstallaties heeft uiteraard de voorkeur. Ten aanzien van transport geldt dat een korte transportroute leidt tot lagere kosten,

⁴ Ook diepe aquifers op kilometers diepte kunnen een zeer veilige opslaglocatie bieden voor CO₂. Hiervoor zal eerst nog veel onderzoek (geologisch, seismeik, proefboringen) gedaan moeten worden om dat aan te tonen. Daar is in het kader van deze overheidstender nog de tijd noch genoeg geld voor.
zodat de opslagreservoirs bij voorkeur nabij een CO$_2$-bron worden geselecteerd. Indien mogelijk wordt gebruik gemaakt van bestaande leidingen. Voor de gasreservoirs geldt dat deze (vrijwel) leeggeproduced dienen te zijn, zodat geen aardgas verloren gaat. Bij voorkeur wordt tenslotte gebruik gemaakt van bestaande putten.

Voorwaarden overheidstender

Belangrijke uitgangspunten uit de overheidstender voor de locatiekeuze zijn het volume, de voorkeur van opslag onder land (onshore) en de start van het project in 2010. De overheidstender vraagt van het demonstratieproject minimaal 2 Mton op te slaan in een periode van 10 jaar. Dit vormt een selectie criterium voor de grootte van de beschikbare reservoirs, maar tevens voor de bron. De voorkeur van een locatie onshore, heeft betrekking op het demonstratie-aspect van het project. Sinds enkele jaren vindt al een demonstratieproject offshore plaats. Dit geeft inzicht in de mogelijkheden van CO$_2$-opslag. Er zijn nog geen projecten onshore gestart. Het voordeel van een project onshore is gelegen in het feit dat hiermee inzicht wordt verkregen in de haalbaarheid van toekomstige CO$_2$-opslag in leeggeproducede gasvelden. Rekenkundig kan in de komende jaren een relatief grote hoeveelheid CO$_2$ worden opgeslagen in leeggeproduceerde gasvelden. Het demonstratieproject kan tevens inzicht geven hoe realistisch deze inschattingen zijn.

2.2.2. Afweging

De uitgangspunten zoals bovenstaand beschreven, leiden tot een afbakening van de mogelijke locaties. Het betreft een onshore leeggeproduced gasveld met voldoende capaciteit voor de opslag van 2 Mton in 10 jaar.

Afweging tussen locaties in Noord-Nederland of West-Nederland

In het noorden zijn op dit moment geen bronnen die voldoende (chemisch) zuivere CO$_2$ leveren voor een demonstratieproject. Voor de opslag van 2 Mton in 10 jaar is een gemiddelde productie van minimaal 0,2 Mton (200 Kton CO$_2$) per jaar nodig.

Hiertoe zou transport moeten plaatsvinden vanaf bronnen in West-Nederland richting het noorden. Dit brengt extra kosten met zich mee en een groter energieverbruik. Het CO$_2$ moet namelijk op druk worden vervoerd. Daarvoor zijn meerdere compressoren nodig die energie verbruiken en daarmee extra CO$_2$-uitstoot veroorzaken. Daarnaast zijn er in het noorden nog weinig lege aardgasvelden.

Het Groningen-gasveld zal nog zeker tot 2040, maar mogelijk nog decennia langer in productie zijn. Het veld is daarnaast zo groot dat onderzoek naar mogelijkheden voor CO$_2$-opslag in dit veld op dit moment niet de prioriteit heeft. Een klein veld is veel geschikter als demonstratieproject.

Tabel 2.1 geeft op basis van verder uitgewerkte criteria (zoals beschreven in rapport 3, hoofdstuk 2) een overzicht van de relatieve geschiktheid van reservoirs. Onderstaand wordt hier nog verder op ingegaan.
Tabel 2.1. Overzicht locatiekeuze gebaseerd op veiligheid, kosteneffectiviteit en de voorwaarden uit de tender.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Noord-Nederland</th>
<th>West-Nederland</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Algemeen</td>
<td>De Lier</td>
</tr>
<tr>
<td>Veiligheid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geschiktheid reservoir</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Geen afgesloten putten</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Putten toegankelijk</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Kosteneffectief</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beschikbare pure bron</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Lengte nieuwe pijpleiding</td>
<td>- -</td>
<td>0</td>
</tr>
<tr>
<td>Leeggeproduceerd veld</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Emissierechten</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Overheidstender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leereffecten</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tijdig starten</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Volume in reservoir</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Keuze beschikbare leeggeproduceerde gasvelden

Een reservoir is in beginsel beschikbaar nadat de gasproductie is beëindigd, aangezien de combinatie van gelijktijdige CO$_2$-opslag en gaswinning binnen een reservoir op termijn kan leiden tot verstoring van de gasproductie.

Er is een inventarisatie gemaakt van de gasvelden waar de productie van aardgas de komende jaren zal stoppen. De afzonderlijke velden zijn voor verschillende doeleinden mogelijk geschikt: voor tijdelijke buffering van aardgas, voor waterinjectie, voor CO$_2$-opslag en een deel kan het beste gewoon worden afgesloten. Welke velden waarvoor zullen worden gebruikt, hangt af van diverse factoren zoals de geschiktheid van het veld, ligging van het veld, behoefte aan opslagcapaciteit, kosten en noodzaak, en het overheidsbeleid.

Terwijl momenteel nog veel gasvelden in productie zijn, is het de verwachting dat de komende jaren steeds meer gasvelden uitgeproduceerd raken. Zij komen daarmee de komende jaren geleidelijk aan beschikbaar. Op korte termijn tot 2010 is het aantal beschikbare reservoirs in West-Nederland echter beperkt, zoals blijkt uit tabel 2.2.

De tenderprocedure schrijft randvoorwaarden voor, zoals de start van injectie op korte termijn en minimaal opslagvolume. Indien de beschikbare velden beoordeeld worden los van deze criteria, blijkt het volgende.

Naast deze inventarisatie is een vergelijkbaar overzicht opgesteld voor alle velden onshore (zie figuur 2.1) en door Nogepa voor de offshore velden. Dit geeft een overzicht van mogelijk beschikbare velden en de beschikbaarheidsdatum. Van de zijde van de initiatiefnemer kunnen overigens geen uitspraken worden gedaan over velden op land of zee die niet in haar beheer zijn, dit in verband met de noodzakelijke toegang tot de (geologische) veldgegevens. Beperkende factoren blijven wel de beschikbaarheid van een ‘zuivere’ bron, de afstand tussen bron en opslaglocatie en de (veiligheids)karakteristieken van een veld.
In West-Nederland heeft onderzoek uitgewezen dat reservoirs van het gasveld De Lier en het gasveld Barendrecht beschikbaar zijn. Nadat CO₂ in 3 jaar is opgeslagen in het gasveld Barendrecht, komt het gasveld Barendrecht-Ziedewij beschikbaar voor CO₂-opslag.
Onderzoek gasveld De Lier

In eerste instantie zijn de mogelijkheden van gasveld De Lier onderzocht. Dit gasveld is inmiddels afgesloten en wordt verder gekenmerkt door het relatief grote aantal putten (circa 40). Veel van deze putten zijn al afgesloten en niet meer toegankelijk. Vanuit beheersbaarheid en veiligheid is dit geen gewenste situatie. De voorkeur gaat uit naar een situatie waarbij de putten wel nog bereikbaar zijn om vroegtijdig mogelijke lekkagerisico’s te identificeren. De risicoanalyses, zoals uitgebreid beschreven in deelrapport 3, geven aan dat het van belang is dat putten zowel tijdens de injectiefase als na afloop controleerbaar zijn. Vanwege het grote aantal en de beperkte bereikbaarheid van de putten is de locatie De Lier daarom afgevallen.

Genoemde afwegingen leiden samengevat tot tabel 2.1. De achtergronden van de scores worden nader toegelicht in hoofdstuk 2 van deelrapport 3.

Milieuafweging

De locatiekeuze is gebaseerd op de aspecten veiligheid, kosteneffectiviteit en tendervoorwaarden. De uitgebreide beschrijving van de toetsing komt aan bod in hoofdstuk 2 van deelrapport 3. Daaruit blijkt dat onderliggend in de locatiekeuze zich de volgende milieuafwegingen bevinden:

- Veiligheid in de vorm van externe veiligheid is expliciet als randvoorwaarde meegenomen.
- Beperking van de lengte van het leidingtracé is naast een commerciële afweging eveneens een milieuafweging. Er is getoetst op hergebruik van bestaande leidingen. Indien een nieuwe leiding moet worden aangelegd, is een zo kort mogelijke afstand tussen bron en reservoir bij de toetsing meegenomen.
• Hergebruik van bestaande putten is als criterium meegenomen, waarbij wordt voorkomen dat
opnieuw putten geboord moeten worden.
• Het energiezuinig uitvoeren van het project, is eveneens onderdeel van de toetsing geweest. De
zuivere CO\(_2\)-bron wordt hierbij als gunstig beoordeeld, zodat geen rendement verloren gaat bij de
afvang van CO\(_2\).

2.2.3. Selectie

De afweging van mogelijkheden, die binnen de gestelde randvoorwaarden beschikbaar zijn, heeft
geleid tot het gebruik van de CO\(_2\)-bron van de Shell Nederland Raffinaderij, een pijpleiding voor
transport van circa 20 km, en de gecombineerde locaties en gasvelden van Barendrecht (BRT) en
Barendrecht-Ziedewij (BRTZ).

CO\(_2\)-bron

Shell Nederland Raffinaderij beschikt in Pernis over een bestaande CO\(_2\)-bron van pure CO\(_2\),
afkomstig uit de Shell Gasification Hydrogen Plant (SGHP). De SGHP produceert per jaar ongeveer
een miljoen ton CO\(_2\). Afvang en hergebruik van deze CO\(_2\) vindt al plaats. Momenteel wordt een deel
van de pure CO\(_2\) gebruikt in de voedingsindustrie (bijvoorbeeld voor de frisdrankindustrie) en een
gedeelte wordt aan glastuinbouw in de provincie Zuid-Holland geleverd. Doordat in de winterperiode
de vraag zeer gering is, wordt het overige deel van het CO\(_2\) in de winterperiode nog uitgestoten in de
atmosfeer. Het betreft circa 400 Kton CO\(_2\) per jaar.

De SGHP heeft gemiddeld 400 kton CO\(_2\) per jaar beschikbaar voor opslag. De afvang is al
operationeel, zodat optimaal gebruik kan worden gemaakt van bestaande infrastructuur. Het is
chemisch vrijwel zuivere CO\(_2\) zodat geen aanvullende scheiding van gassen nodig is. Daarnaast is
het droog CO\(_2\), zodat geen water uit de gasstroom hoeft te worden gehaald. Hiermee vormt SGHP
een uiterst geschikte bron.

Transport en compressie vanaf Plot 16

Voor het transport van CO\(_2\), alsmede voor de compressie, werkt Shell samen met OCAP. OCAP zorgt
al voor levering van CO\(_2\) aan de glastuinbouw en frisdrankindustrie, zodat bewezen ervaring
beschikbaar is. De huidige compressie van het CO\(_2\) vindt plaats op een locatie die wordt aangeduid
als Plot 16, grenzend aan SNR. Deze compressoren zijn al drie jaar operationeel en nodig voor
effectief transport van het CO\(_2\).

Bij het compressiegedeelte is gebruik van bestaande infrastructuur slechts gedeeltelijk mogelijk. De
bestaande compressoren bij de CO\(_2\)-bron kunnen worden gebruikt, maar dienen uitgebreid te
worden voor meer capaciteit. Voor het transport van CO\(_2\) naar de leeggeproduceerde gasvelden is
een pijpleiding nodig. Het is niet mogelijk bestaande leidingen te gebruiken, omdat die nog voor
transport van andere stoffen worden gebruikt, danwel omdat deze niet geschikt zijn voor de beoogde
toepassing van CO\(_2\)-transport. Dit betekent dat voor het project een nieuwe pijpleiding moet worden
aangelegd. De afstand vanaf de bron naar de reservoirs is relatief groot, circa 16,5 km tot aan de
locatie Barendrecht en vervolgens nog 3,5 km naar locatie Barendrecht-Ziedewij.
Bij de ligging van het leidingtracé is zoveel mogelijk gebruik gemaakt van de bestaande voorzieningen, zoals de leidingstrook in het havengebied en de Buisleidingenstraat hierop aansluitend. Door gebruik te maken van deze voorzieningen levert de ligging van de transportleiding zo min mogelijk beperking aan ruimtegebruik.

Barendrecht-locaties

Bij Barendrecht bevinden zich twee locaties, die afzonderlijk op onderdelen niet voldoen aan de uitgangspunten wat betreft volume (Barendrecht) en tijdelijkheid (Barendrecht-Ziedewij), maar die in combinatie hier wel aan voldoen.

Het gasveld bij de locatie Barendrecht (BRT) is in 2010 leeggeproduceerd en beschikt over een twee putten. Het volume van het reservoir is echter te beperkt, maximaal circa 0,8 Mton.

Het gasveld bij de locatie Barendrecht-Ziedewij (BRTZ) beschikt over vier goed toegankelijke putten en heeft voldoende volume, circa 9,5 Mton. Het reservoir is echter pas in 2014 leeggeproduceerd.

Het demonstratieproject kan aan de uitgangspunten voldoen door eerst CO\(_2\) op te slaan in het reservoir van de locatie Barendrecht en vervolgens vanaf 2014 over te schakelen op de locatie Barendrecht-Ziedewij. Hier kan ook na de periode van 10 jaar, zoals opgenomen in de overheidsbod, nog circa 18 jaar aanvullende CO\(_2\) worden opgeslagen. Bij beide locaties kan gebruik worden gemaakt van de bestaande putten, die aangepast worden voor CO\(_2\)-injectie. Daarbij zullen op de locaties extra compressoren moeten komen.

In tabel 2.1 wordt op het aspect ‘leereffecten’ in zowel Noord-Nederland als West-Nederland een ‘+’ gescoord. Voor de combinatie van velden Barendrecht en Barendrecht-Ziedewij wordt echter een ‘++’ gescoord, aangezien dit de mogelijkheid biedt een complete cyclus van opstarten, injecteren en afsluiten te realiseren in relatief beperkte tijd. Dit leereffect wordt met een extra ‘+’ aangeduid.

2.3 Projectoverzicht

Zoals al beschreven, kenmerkt het project zich door de verschillende onderdelen, die goed op elkaar moeten aansluiten. Zo is bij de locatiekeuze aandacht besteed aan de bron van CO\(_2\), het transport en het opslagschot. Bij de verdere beschrijving wordt de onderverdeling nog wat verder uitgebreid. De compressorfaciliteiten nabij de CO\(_2\)-bron worden apart benoemd en beschreven. Bij de injectielocatie wordt onderscheid gemaakt tussen de bovengrondse installaties en de ondergrondse structuren. Het demonstratieproject bestaat zodoende uit de volgende onderdelen:

- Bron Shell Nederland Raffinaderij (afvang CO\(_2\)).
- Compressiestation Plot 16.
- Transport per ondergrondse pijpleiding.
- Compressie- en injectiefaciliteiten injectielocatie Barendrecht.
- Injectie- en monitoringputten op injectielocatie Barendrecht.
Het CO₂ is afkomstig van de Shell Gasification Hydrogen Plant (SGHP) op de Shell Pernis raffinaderij. Bij de raffinaderij zijn geen fysieke aanpassingen nodig. In de huidige situatie vindt CO₂-afvang plaats. Gedurende de perioden dat het CO₂ niet kan worden geleverd aan de glastuinbouw of frisdrankindustrie, vindt emissie naar de lucht plaats. Voor deel 1 (waarbij CO₂ wordt opgeslagen via de locatie Barendrecht, gedurende circa 3 jaar) zal jaarlijks ongeveer 70% van de resterende CO₂ kunnen worden opgeslagen. In deel 2 kan op de locatie Barendrecht-Ziedewij met een grotere capaciteit CO₂ worden opgeslagen, zodat het hier mogelijk is alle afgevangen CO₂ op te slaan.

Het bestaande compressorstation Plot 16 zal worden gebruikt om het CO₂ van de SGHP te comprimeren naar maximaal 22 bar. Het CO₂ komt binnen vanaf de raffinaderij met een druk van circa 1 bar. Voor vervoer naar de Barendrechtvelden zal de druk verder worden verhoogd. Dit betekent dat uitbreiding zal moeten plaatsvinden. Er is bij Plot 16 ruimte beschikbaar voor de extra compressoren. Transport naar de injectielocaties zal plaatsvinden met een druk van 25 tot maximaal 40 bar. Bij deze druk is het CO₂ gasvormig.
Vanaf het compressiestation wordt het CO₂ per ondergrondse pijpleiding getransporteerd. Voor de route van de pijpleiding wordt grotendeels gebruik gemaakt van de bestaande leidingenstraten. Dit is een gereserveerde zone voor de aanleg van transportleidingen, zodat zo min mogelijk overlast voor de omgeving wordt veroorzaakt. Het oostelijk deel van het tracé, vanaf Molenpolderse Zeedijk, dient buiten de buisleidingenstraat aangelegd te worden, waarbij zoveel mogelijk aangesloten wordt op het tracé van de NAM-gasleidingen en overige leidingen. Dit geldt tevens voor het tracé vanaf de locatie Barendrecht tot aan de locatie Barendrecht-Ziedewij.

Op de beide injectielocaties komen compressoren te staan, waarmee de druk van het CO₂ verder kan worden verhoogd. Aanvankelijk zal de druk in de reservoirs vergelijkbaar zijn met de druk van het aangeleverde CO₂. Geleidelijk aan neemt de druk echter toe tot ruim 160 bar (onder in het reservoir) bij de locatie Barendrecht en ruim 300 bar onderin het dieper gelegen reservoir van de locatie Barendrecht-Ziedewij. Gedurende het project zullen de compressoren ervoor moeten zorgen dat de injectiedruk voldoende kan toenemen.

Op beide locaties zal gebruik worden gemaakt van een injectieput en monitoringputten (1 of 2). Vanuit de injectieput wordt het reservoir gevuld tot iets minder dan de oorspronkelijke druk van het gasveld. Na de injectieperiode zullen het reservoir, de putten en de omgeving gemonitord worden. Uiteindelijk worden de putten afgesloten met behulp van de zogenaamde pannenkoekpluggen, waardoor aantasting van de putten kan worden voorkomen (zie hoofdstuk 5). Zodra een stabiele eindsituation is bereikt, kan de locatie worden overgedragen aan de overheid. De voorwaarden voor de overdracht van de initiatiefnemer aan de overheid en de afspraken met betrekking tot een mogelijke voortzetting van de monitoring, komen onder meer bij het Sluitingsplan aan bod.

2.4 Betrokken partijen

Het project wordt uitgevoerd door een samenwerkingsverband van meerdere partijen. Daarnaast zijn overheidspartijen betrokken als bevoegd gezag of via de tenderprocedure. Voor de beoordeling van het MER zal een beroep worden gedaan op de Commissie voor de m.e.r. en diverse adviseurs. Onderstaand wordt een overzicht gegeven van de verschillende betrokken partijen met hun eigen rol in het project.

SNR
Shell Nederland Raffinaderij in Pernis (SNR) is de oorspronkelijke initiatiefnemer. Dit is de eigenaar van het CO₂ en hier wordt het CO₂, dat gebruikt gaat worden voor opslag, momenteel afgeblazen. Omdat voor ondergrondse opslag in lege gasvelden kennis over de ondergrond nodig is, heeft SNR het project overgedragen aan een nieuw opgezet bedrijf namelijk SCS.

SCS
Shell CO₂ Storage B.V. (SCS) is door Shell opgericht voor de uitvoering van dit project. Dit bedrijf heeft het projectmanagement overgenomen van NAM en zal te zijner tijd ook de lege NAM-gasvelden overnemen voor CO₂-opslag. SCS zal via Shell International Exploration & Production (SIEP) tevens de nodige deskundigheid zekerstellen.
OCAP

OCAP is een samenwerkingsverband tussen Linde Gas en VolkerWessels. OCAP heeft al bestaande infrastructuur in het gebied. OCAP is verantwoordelijk voor de compressie en voor het leidingtransport (het CO\(_2\) te transporteren van de raffinaderij naar de Barendrecht velden).

SenterNovem

SCS heeft voor dit project ook een contract afgesloten met de overheid (zie ook hoofdstuk 1.3). SenterNovem is de opdrachtgever voor dit contract namens het ministerie van VROM, die leidend is in het klimaatbeleid.

Bevoegd gezag

- De provincie Zuid-Holland is het bevoegd gezag voor het in de ondergrond injecteren van CO\(_2\) afkomstig van buiten een inrichting voor de Wet milieubeheer en in het verlengde hiervan het MER.
- Het Ministerie van Economische Zaken is bevoegd gezag voor de bovengrondse inrichting, evenals voor ondermeer de Opslagvergunning en het Opslagplan.
- De gemeenten Barendrecht, Albrandswaard en Rotterdam zijn bevoegd gezag voor de bestemmingsplanwijziging van het pijpleidingtracé alsmede voor de aanlegvergunningen voor de pijpleiding. Daarnaast is de gemeente Barendrecht bevoegd gezag voor de bestemmingsplanwijziging van de locaties en de bouwvergunningen voor de locaties.
- DCMR ondersteunt de provincie en gemeenten bij de vergunningverlening.
- De Nederlandse Emissieautoriteit (NEa) is de bevoegde instantie voor de vergunning in het kader van de emissiehandel, waarbij het ministerie van VROM de zogeheten ‘opt-in’ bewerkstelligt.
- Overige instanties zoals het waterschap Hollandse Delta, Rijkswaterstaat en Prorail voor overige vergunningsaanvragen.

Betrokkenen

De eigenaar van de Buisleidingenstraat vormt een direct betrokkene bij dit project, evenals de landeigenaren van de gronden waarin de pijpleiding wordt aangelegd. Daarnaast worden de bewoners nabij de locaties en langs de pijpleiding gezien als direct betrokkenen.

2.5 Projectfasen

In de startnotitie staat aangegeven dat het project zal bestaan uit twee fasen. Tijdens de eerste fase vindt CO\(_2\)-opslag plaats via de locatie Barendrecht. Daarna vindt in de tweede fase CO\(_2\)-opslag plaats via de locatie Barendrecht–Ziedewij. De term fase kan verwarring zijn in dit MER aangezien tevens onderscheid wordt gemaakt tussen de aanlegfase, injectiefase en afsluitingsfase. Om de terminologie helder te houden, zullen in het MER de activiteiten bij locatie Barendrecht worden aangeduid als deel 1 (in plaats van fase 1) en de activiteiten bij de locatie Barendrecht–Ziedewij als deel 2 (in plaats van fase 2).
2.5.1. Opslag in reservoirs
Het MER is opgesteld voor zowel deel 1 als deel 2. Dit wordt samen gezien als het demonstratie-project.

Deel 1 – injectielocatie Barendrecht
Het eerste deel bestaat uit de aanleg van de verschillende faciliteiten, gevolgd door de periode van injectie in het reservoir van Barendrecht. Bij Plot 16 vindt uitbreiding plaats, de pijpleiding wordt aangelegd vanaf Plot 16 naar de locatie Barendrecht. Na een periode van circa 3 jaar, wordt de injectie beëindigd. Daarna vindt monitoring plaats en tot slot wordt, zodra een stabiele eindsituatie is bereikt, het reservoir aan de overheid overgedragen.

Deel 2 – injectielocatie Barendrecht-Ziedewij
Het tweede deel bestaat uit de aanleg van de transportleiding tussen de locatie Barendrecht en de locatie Barendrecht-Ziedewij, aanpassing van locatie Barendrecht-Ziedewij en de injectie in het reservoir. In principe geldt hiervoor dezelfde cyclus als beschreven bij injectielocatie Barendrecht, met een paar aanpassingen:

- De injectieperiode is veel langer, circa 25 jaar in plaats van 3 jaar.
- Injectie van CO₂ start terwijl nog gasproductie plaatsvindt. Het is de verwachting dat na ongeveer een jaar de gasproductie gestaakt zal worden.
- Na een aantal jaren wordt een tweede compressor toegevoegd. Gestart wordt met de overgeplaatste compressor van de injectielocatie Barendrecht (deel 2a). Later komt een extra compressor op de locatie (deel 2b).

Overgang van deel 1 naar deel 2
In verband met het verplaatsen van de compressor en het aanpassen van de pijpleiding, zal tussen de opslagperiode voor Barendrecht en voor Barendrecht-Ziedewij een aantal maanden geen CO₂ worden opgeslagen.

Monitoring en evaluatie
Voorafgaand aan de injectie, gedurende de injectie en na afronding van de injectie zal monitoring plaatsvinden. De monitoringsresultaten zullen worden gebruikt om daar waar nodig operationeel bij te sturen. Daarnaast worden, met behulp van de monitoring, gegevens voor de evaluatie verzameld.

Go – No go beslissing
Voordat het tweede deel van het project wordt gestart, de injectie bij de locatie Barendrecht-Ziedewij, zal hierover een formele beslissing worden genomen. Dit is de zogenaamde Go - No go beslissing. Uitgangspunten voor deze beslissing zijn:
• In principe wordt ervan uitgegaan dat deel 2 kan worden uitgevoerd. Dit maakt onderdeel uit van de tenderrandvoorwaarden. Indien zich geen zeer bijzondere omstandigheden voordoen, wordt het project dus voortgezet met deel 2.
• Conform de richtlijnen zal het MER na het eerste deel worden geactualiseerd.
• Hoewel deel 2 start nadat deel 1 is afgesloten, kan bij de afweging nog niet alle informatie van deel 1 worden gebruikt. Voor deel 2 is een voorbereidingsperiode nodig, waarin vergunningen worden aangevraagd en werkzaamheden moeten worden uitgevoerd. De bevindingen van deel 1 zijn daardoor nog niet compleet beschikbaar als de beslissing over deel 2 wordt genomen. De beschikbare tussentijdse resultaten zullen bij de afwegingen worden betrokken.
• Daarnaast komt een deel van de informatie pas beschikbaar in de jaren na afronding van de injectie, aangezien nog jaren monitoring plaatsvindt tot aan een stabiele eindsituatie.

2.5.2. Fasering in het project
Het project bestaat uit vier voortgangsfasen, die worden aangeduid als de aanlegfase, de operationele fase (of injectiefase), de afsluitingsfase en de fase na afsluiting (lange termijn). Deze vier fasen zijn relevant voor zowel de CO₂-opslag activiteiten bij Barendrecht als bij Barendrecht–Ziedewij.

Onderstaand wordt een overzicht gegeven van de belangrijkste activiteiten die worden voorzien gedurende deze fasen.

Aanlegfase
De aanlegfase kenmerkt zich door een aantal werkzaamheden, waarbij terreinen geschikt worden gemaakt, installaties en leidingen worden aangebracht of worden aangepast. Onderstaand een kort overzicht van de belangrijkste werkzaamheden in de aanlegfase:

Locatie Barendrecht:
- Ter plaatse van het bestaande compressorstation op Pernis vindt uitbreiding plaats met twee extra compressoren, waarvoor het grondgebied van Pla 16 wordt uitgebreid. De huidige locatie van OCAP wordt uitgebreid op het terrein van Shell.
- Een leiding wordt aangelegd vanaf Pernis naar Barendrecht.
- De gaswinning op locatie Barendrecht wordt voor aanvang van deel 1 gestopt. Beide putten op de locatie zijn dan nog niet afgesloten. Eén put wordt aangepast voor CO₂-injectie, de tweede put wordt gebruikt voor monitoring. De bestaande flowleiding wordt verwijderd en een nieuw CO₂-injectieleidingsysteem wordt geïnstalleerd (KISS skid\(^5\)). Daarnaast wordt een compressor met bijbehorende installaties op de locatie geplaatst.
- Voorafgaand aan injectie zullen enige monitoringactiviteiten op en rond de locatie plaatsvinden (seismische, atmosferische en grondwaternulmetingen).

\(^5\) KISS = Keep It Smart and Simple, mobiele installatie met regelinstrumentatie.
Locatie Barendrecht-Ziedewij:

- Een aanvullende leiding wordt aangelegd vanaf locatie Barendrecht naar locatie Barendrecht-Ziedewij.

Injectiefase

Tijdens de operationele fase vindt op reguliere basis compressie, transport en opslag van CO_2 plaats. Kenmerkend hierbij is

- Het CO_2 wordt aangevoerd met een transportdruk van 40 bar en wordt op locatie verder gecomprimeerd naar superkritisch bij een maximale injectiedruk van 120/160 bar. Deze injectiedruk zal laag beginnen en gedurende de injectie stijgen totdat het veld opgevuld is tot circa 8 bar onder de initiële druk.
- De injectie varieert gedurende het jaar, wat inhoudt dat er gedurende perioden meer dan gemiddeld CO_2 beschikbaar is en verwerkt wordt en perioden met minder CO_2.
- In de zomermaanden, wanneer weinig CO_2 voor opslag beschikbaar is, zullen de injectiecompressoren vrijwel dagelijks starten en stoppen.
- Het reservoir Barendrecht is gedurende 3 jaar operationeel voor injectie. In Barendrecht-Ziedewij zal gedurende een periode van circa 25 jaar CO_2 geïnjecteerd worden.
- Tijdens de beginfase van Barendrecht-Ziedewij zal aardgas worden (door)geproduceerd, mede om de CO_2-doorbraak binnen het reservoir zelf te monitoren en de reservoirmodellen te verifiëren. Met CO_2-doorbraak wordt bedoeld dat geïnjecteerd CO_2 vanaf de injectieput de monitoringsput bereikt.
- Gedurende deze fase worden gegevens verzameld om inzichtelijk te maken hoe de opslag verloopt. De monitoringgegevens worden vergeleken met de voorspellingen van modellen van het injectie-systeem om afwijkingen van het voorspelde gedrag van het opslagreservoir vast te stellen.
- Er zal periodiek onderhoud plaatsvinden.

De injectie van CO_2 zal worden voortgezet tot vrijwel de oorspronkelijke druk in het reservoir weer is bereikt. Er wordt een veiligheidsmarge voor opvulling (circa 97% van opvulvolume tot initiële druk) gehanteerd. Zo kan men rekening houden met eventuele lange-termijn-drukverhoging als gevolg van fysische opmengingsverschijnselen en dichtheidsveranderingen en als gevolg van lokale drukverschillen in het veld tijdens injectie (zie deelrapport 3).

Afsluitingsfase (post-injectiefase, monitoringsfase)

Na de injectiefase volgt een periode van monitoring, waarbij de injectieput en monitoringsputten nog niet zijn afgesloten. In deze fase vindt nauw overleg plaats met het bevoegd gezag en Staatstoezicht op de Mijnen (SodM). Wanneer volgens afspraken een stabiele situatie is aangetoond, zullen de putten worden afgesloten. Hierbij wordt gebruik gemaakt van de zogenaamde pannenkoekplug,
waarbij in het reservoir de putconstructie wordt beschermd tegen mogelijke aantasting. Dit vormt een waarborg voor het lekvrij achterlaten van de put.

Uiteindelijk draagt de uitvoerder de locaties weer over aan de overheid of de oorspronkelijke grondeigenaren. De putten worden tot enkele meters onder het maaiveld verwijderd, zodat normaal landgebruik weer mogelijk is. Het moment van overdracht en eventuele vervolgobservaties dient in goed overleg vastgesteld te worden. Daarbij is gewaarborgd dat de locatie veilig is en er afspraken zijn gemaakt over eventuele verdere monitoring.

Fase na afsluiting (lange termijn)

De locatie wordt weer aan de eigenaar overgedragen, terwijl de overheid verantwoordelijk is voor het opgeslagen CO\textsubscript{2}. Het is de bedoeling dat verder geen gebruiksbeperkingen zullen rusten op het grondgebied van de locatie en boven de opgevulde reservoirs.

Tabel 2.2 Specifieke aspecten injectielocaties per projectfase

<table>
<thead>
<tr>
<th>Locatie Barendrecht (BRT)</th>
<th>Locatie Barendrecht–Ziedewij (BRTZ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aanlegfase</td>
<td></td>
</tr>
<tr>
<td>uitbreiding Plot 16</td>
<td>aanleg pijpleiding naar BRTZ</td>
</tr>
<tr>
<td>aanleg pijpleiding naar BRT</td>
<td>installatie KISS-skid</td>
</tr>
<tr>
<td>compressor BRT</td>
<td>aanpassing putten BRTZ</td>
</tr>
<tr>
<td>installatie KISS-skid</td>
<td></td>
</tr>
<tr>
<td>aanpassing put BRT</td>
<td></td>
</tr>
<tr>
<td>Injectiefase</td>
<td></td>
</tr>
<tr>
<td>Barendrecht</td>
<td>Barendrecht–Ziedewij</td>
</tr>
<tr>
<td>1 compressor</td>
<td>2a compressor</td>
</tr>
<tr>
<td></td>
<td>2b dubbele compressor</td>
</tr>
<tr>
<td>Post-injectiefase</td>
<td></td>
</tr>
<tr>
<td>Monitoring voor afsluiting</td>
<td>Monitoring voor afsluiting</td>
</tr>
<tr>
<td>Pannenkoekplug</td>
<td>Pannenkoekplug</td>
</tr>
<tr>
<td>Lange termijn</td>
<td></td>
</tr>
<tr>
<td>Monitoring</td>
<td>Monitoring</td>
</tr>
</tbody>
</table>

2.6 Projectplanning

Uitgangspunt bij de planning is dat de start van CO\textsubscript{2}-injectie plaatsvindt in maart 2011. Naar verwachting zal gedurende 3 jaar CO\textsubscript{2} worden geïnjecteerd, tot de zomer van 2013. Aangezien het CO\textsubscript{2} vooral beschikbaar is gedurende de wintermaanden, zal in de praktijk vooral gedurende de wintermaanden de meeste CO\textsubscript{2}-injectie plaatsvinden. In 2014 begint de CO\textsubscript{2}-injectie bij de locatie Barendrecht-Ziedewij. Deze staat gepland voor circa 25 jaar, tot 2038.

De planning op hoofdlijnen is in het volgende schema weergegeven. Daarbij is de voorbereiding voor beide locaties eveneens ingepland en een periode van monitoring na beëindiging van de CO\textsubscript{2}-injectiefase.

Onshore is de pannenkoekplug in Nederland de afgelopen jaren toegepast in circa 9 putten.
Zoals bovenstaand schema aangeeft, vindt de gehele cyclus van voorbereiding en aanleg tot aan afsluiting voor het veld Barendrecht plaats in de periode van 2007 tot 2014. In het onderstaande schema is dit nader aangegeven.

De planning geeft aan dat in de periode voorafgaand aan het begin van CO$_2$-injectie, de werkzaamheden aan de locaties plaatsvinden en de aanleg van de pijpleiding. De werkzaamheden kunnen starten zodra het MER is goedgekeurd en vervolgens de vergunningen zijn verleend.

Dit leidt voor het eerste deel tot de volgende indicatieve planning voor de opslag bij de injectielocatie Barendrecht:

Aanlegfase deel 1: Barendrecht
- Indienen MER en vergunningsaanvragen eind 2008.
- Duidelijkheid vergunningen eind 2009.
- Aanleg pijpleiding 2010.
- Aanpassen Plot 16 in 2010.
- Afsluiten gaswinning Barendrecht en aanpassen putten in 2010.
- Tussentijdse evaluatie bevindingen aan de hand van monitoringsresultaten.

Injectiefase Barendrecht
- Injectie gedurende drie jaar, vooral de wintermaanden vanaf begin 2011 tot eind 2013.
Monitoringsfase Barendrecht

- Monitoring in open putten, tot begin 2015.
- Afsluiten van putten met pannenkoekplug in 2015.
- Monitoring afgesloten putten om stabiele eindsituatie vast te stellen, tot 2017.

Overdracht bij stabiele situatie Barendrecht

- De gasbehandelingsinstallatie (GBI) nabij de locatie Barendrecht blijft wel operationeel zolang er voldoende gasproductie vanaf andere winlocaties beschikbaar is.

Aanlegfase deel 2

De voorbereidende werkzaamheden voor deel 2 zullen starten, voordat de injectie in deel 1 is afgelopen, zodat in het gunstigste geval de injectie vrijwel ongestoord kan worden voortgezet in het reservoir van Barendrecht-Ziedewij.

- Indienen resterende vergunningsaanvragen in 2012.
- Evaluatie bevindingen deel 1 en aanvulling en actualisatie MER 2012.
- Duidelijkheid vergunningen eind 2012.
- Aanleg pijpleiding van Barendrecht naar Barendrecht-Ziedewij 2013.
- Aanpassen putten in 2013.
- Start CO₂-injectie in 2014.
- Gaswinning gaat nog door tot 2014 terwijl CO₂ opslag al is begonnen.

Vervolgarfasen deel 2

Na circa 12 jaar komt er naar verwachting een extra compressor op de locatie Barendrecht–Ziedewij, in 2026.

Het is de verwachting dat gedurende circa 25 jaar het reservoir van de locatie Barendrecht–Ziedewij zal worden gevuld met CO₂. Afsluiting van het reservoir zal plaatsvinden met vergelijkbare activiteiten als beschreven bij de afronding van deel 1. Waarschijnlijk is de afsluitingsperiode korter, indien de locatie Barendrecht hiermee voldoende ervaring is opgedaan. Het is uiteraard mogelijk dat inmiddels nieuwe inzichten beschikbaar zijn, wat betreft de afronding van het project.
3. Beleids- en wettelijk kader

3.1 Inleiding

Dit hoofdstuk zet de hoofdlijnen van beleid en regelgeving ten aanzien van de voorgenomen activiteiten uiteen. CO₂-opslag volgt drie beleidssporen: klimaatbeleid, CCS-beleid en ruimtelijke ordeningsbeleid. Het beleid ten aanzien van de diverse specifieke milieuaspecten komt in deelrapport 2 van het MER aan bod.

Aan de basis van CO₂-afvang en –opslag ligt het klimaatbeleid. Dit beleid vormt de achtergrond waartegen de opslag van CO₂ bezien moet worden. In paragraaf 3.2 wordt ingegaan op het klimaatbeleid. Vervolgens wordt in paragraaf 3.3 het CCS-beleid beschreven. Onder CCS-beleid worden richtlijnen en beleid aangaande de afvang en geologische opslag van CO₂ verstaan. De nadruk ligt op de m.e.r.-plichtige activiteit, de CO₂-opslag. Ook regelgeving omtrent afvalbeheer wordt meegenomen bij het CCS-beleid. Het wettelijk kader rondom CCS is nog sterk in ontwikkeling. Ten slotte gaat paragraaf 3.4 in op het ruimtelijke ordeningsbeleid vanwege de inpassing van de activiteit in de omgeving.

De drie beleidsonderwerpen worden, indien relevant, op Europees, rijks-, provinciaal (provincie Zuid-Holland) en gemeentelijk niveau bekeken.

3.2 Klimaatbeleid

3.2.1. Inleiding en achtergrond

Erkenning van de risico’s van klimaatverandering resulteerde in 1992 in het klimaatverdrag van Rio de Janeiro. Het doel van dit verdrag is de concentratie van broeikasgassen in de atmosfeer te stabiliseren op een dusdanig niveau dat risico’s veroorzaakt door menselijke activiteiten worden vermeden. In 1997 werd dit verdrag uitgebreid met een extra protocol, het Kyoto-protocol. Dit protocol behelst een overeenkomst tussen de industrielanden om als eerste deel te komen tot een broeikasgasreductie van 5,2% in vergelijking met de uitstoot in 1990. Het verdrag is van kracht geworden op 16 februari 2005. Voor elk industrieland zijn emissiedoelen vastgesteld, afhankelijk van de sterkte van de economie van dat land.

3.2.2. Europa

De Raad van Europa heeft in het voorjaar van 2007 laten zien dat de EU het voortouw neemt in de strijd tegen de opwarming van de aarde. Europese staatshoofden en regeringsleiders hebben een hernieuwd energiebeleid voor Europa aangenomen dat niet alleen de concurrentie bevordert maar ook naar energiebesparing streeft en klimaatneutrale energiebronnen propageert. Dit heeft geleid tot een ‘klimaat actie plan’ waarin de afspraken tussen de EU-regeringsleiders van 27 EU landen uitgewerkt staan (bekend gemaakt op 23 januari 2008). Daarin is onder andere opgenomen dat het de doelstelling van de EU is om 20% minder CO₂ uit te stoten ten opzichte van 1990.

Emissiehandel, Europese ETS (2003)

Eén broeikasgasemissierecht houdt het recht in voor een aantal bedrijfscategorieën om een ton CO\textsubscript{2} (per jaar) uit te stoten. Deze emissierechten zijn verhandelbaar binnen de EU.

Onder handel in emissierechten wordt verstaan, dat een ieder overal in de Europese Unie in emissierechten kan handelen. De handel in emissierechten brengt geen nieuwe milieudoelstellingen mee, maar maakt wel een flexibelerere naleving van de bestaande reductiedoelstellingen mogelijk. Door bedrijven emissierechten te laten kopen of verkopen kunnen zij deze doelstellingen zo efficiënt mogelijk bereiken.

3.2.3. Rijk

Doelstellingen

Eén van de peilers van het Nederlandse regeerakkoord voor 2007-2011 van 7 februari 2007 is een Duurzaam Milieu. Hierbij zijn de volgende beleidsdoelen voor energie voor Nederland vastgesteld:

- Een aandeel van 20% duurzame energie in 2020, bestaande uit een combinatie van groene elektriciteit, groen gas en biobrandstoffen.
- Elk jaar 2% meer energie-efficiëntie.
- Geen nieuwe kerncentrales.
- CO\textsubscript{2}-opslag (CCS) is één van de maatregelen voor het realiseren van de gewenste verminderingsovereenkomsten.

De huidige en toekomstige broeikasgasreductie-strategie in Nederland is gebaseerd op een combinatie van reductiemaatregelen in Nederland en in het buitenland in het kader van het Joint Implementation (JI) en Clean Development Mechanism (CDM).

Implementatie

Het Kyoto-Protocol schrijft voor dat landen een nationaal systeem voor de monitoring van broeikasgassen instellen. Nederland doet dit in protocollen. Deze zijn opgesteld voor de verschillende bronnen die broeikasgassen uitstoten. Er zijn 42 protocollen opgesteld. Ze zijn door VROM gepubliceerd met de ministeriële regeling 'Inventarisatie broeikasgasemissies'.
De Europese ETS-richtlijn is in Nederland geïmplementeerd in de Wet milieubeheer (hierna te noemen: Wm):

Hoofdstuk 16 Wm
Met de ‘Implementatiewet EG-richtlijn handel in broeikasgasemissierechten’ van 30 september 2004 (Stb. 2004, nr. 511) is de Wm gewijzigd om de emissiehandel te implementeren. De uitvoering van hoofdstuk 16 van de Wm is geregeld in het Besluit handel in emissierechten. Het besluit wijst de categorieën van activiteiten aan die onder het systeem van handel in broeikasgasemissierechten vallen. Ook bevat het besluit eisen met betrekking tot de aanvragen om een emissievergunning, de monitoring van emissies en bepalingen over de aan die vergunning te verbinden voorschriften.

In Nederland bestaan er twee emissiehandelssystemen: Eén voor de uitstoot van koolstofdioxide (CO₂) en één voor stikstofoxidens (NOₓ). De handel in CO₂ en NOₓ loopt voor een deel via beurzen. De Nederlandse Emissieautoriteit (NEa) ziet er op toe dat de deelnemende bedrijven de afgesproken regels naleven. De Europese en Nederlandse wetgeving bevat (nog) geen direct aanknopingspunt voor CO₂-opslag, wel kan er gebruik worden gemaakt van een opt-in; de mogelijkheid om als project deel te nemen aan het emissiehandelssysteem.

3.2.4. Regionaal: Provincie Zuid Holland / Regio Rotterdam Rijnmond
Als vervolg op het BANS-Klimaatconvenant, dat uiterlijk in 2008 afloopt, wil de provincie regionale programma’s opstellen voor energiebesparing en duurzame energie. In het Beleidsplan Groen, Water en Milieu 2006 – 2010 stelt de provincie, naast andere maatregelen, daarbij expliciet:

De provincie onderzoekt samen met partners wat de mogelijkheden zijn CO₂ te gebruiken en op te slaan. Als eerste proefproject worden de mogelijkheden van (seizoens)opslag in het gasveld ‘De Lier’ onderzocht.

Uit bovenstaande klimaatsdoelstellingen blijkt dat voor CO₂-opslag op provinciaal niveau draagvlak bestaat. Hierbij is nog niet uitgewerkt, hoe de provincie Zuid-Holland opslag van CO₂ wil stimuleren.

3.3 CCS (CO₂ capture and storage)

3.3.1. Inleiding (vigerend beleid en toekomstig EU beleid)
Het CCS-beleid is momenteel volop in ontwikkeling. In Europees verband worden naar verwachting een aantal richtlijnen en verordeningen, die betrekking hebben op elementen van de afvang en opslag van CO₂, opgesteld of aangepast. Deze regelgeving wordt geïmplementeerd in Nederlandse wet- en regelgeving. Deze paragraaf geeft eerst een niet uitputtend overzicht van de status en recente ontwikkelingen van de relevante EU richtlijnen en beleid. Het geeft de situatie van september 2008 weer. Vervolgens wordt ingegaan op de implementatie in, en de gevolgen voor de Nederlandse, provinciale en gemeentelijke situatie aangaande CO₂-afvang en opslag. Daarbij wordt eveneens aandacht besteed aan de rollen die de verschillende overheidsniveaus spelen wanneer het gaat om CCS.
3.3.2. Europa

Het CCS-proces moet voldoen aan wet- en regelgeving ter bescherming van het milieu van ecosystemen. CCS-activiteiten vallen onder meer onder de volgende verdragen:

- Verdrag van Rio de Janeiro;
- Conventie van Londen, Londen Protocol;
- OSPAR.

Naast het eerder genoemde Verdrag van Rio de Janeiro wordt onderstaand ingegaan op de Conventie van Londen en OSPAR.

Conventie van Londen, Londen Protocol en OSPAR

Onderstaande alinea’s gaan in op de richtlijnen die van toepassing zijn op CCS en die in de komende jaren daarop worden aangepast.
Europese richtlijnen

1. Richtlijn 2006/12/EG van het Europees Parlement en de Raad betreffende afvalstoffen.

De richtlijn betreffende afvalstoffen vervangt de Europese kaderrichtlijn 75/442/EEG van 15 juli 1975 voor afvalstoffen, die herhaaldelijk en ingrijpend is gewijzigd. De huidige richtlijn geeft definities voor afvalstoffen, nuttige toepassing en definitieve verwijdering en legt algemene verplichtingen op voor het verwerken van afval zonder de gezondheid van de mens in gevaar te brengen of het milieu te schaden en tot het treffen van maatregelen om preventie en nuttige toepassing te bevorderen.

De Kaderrichtlijn Afvalstoffen verplicht de lidstaten het onbeheerd achterlaten en het ongecontroleerd lozen of verwijderen van afvalstoffen te verbieden en de preventie, recycling en verwerking van afvalstoffen te bevorderen, zodat afval opnieuw gebruikt kan worden. De lidstaten moeten hierbij samenwerken om een geïntegreerd en toereikend net van verwijderingsinstallaties op te zetten. In dit kader zou afgevangen en opgeslagen CO\textsubscript{2} onder het toepassingsbereik van deze richtlijn kunnen vallen. Met de komst van de opslagrichtlijn valt opgeslagen CO\textsubscript{2} echter niet meer onder de Kaderrichtlijn Afvalstoffen, door CO\textsubscript{2} als uitzondering te definiëren, in de Kaderrichtlijn (artikel 2) en de Richtlijn voor grensoverschrijdend transport (EVOA, artikel 1).

2. Richtlijn 2004/35/EG van het Europees Parlement en de Raad van 21 april 2004 betreffende milieuaansprakelijkheid

De Richtlijn milieuaansprakelijkheid heeft betrekking op milieuschade als gevolg van (potentiële) vervuilende activiteiten. Doel van de Richtlijn milieuaansprakelijkheid is het voorkomen en herstellen van milieuschade en het verhaalbaar maken van de kosten in dat verband. De richtlijn bevat een tweetal belangrijke uitgangspunten te weten: ‘de vervuiler betaalt’ en het ‘preventiebeginsel’. De overheid moet op basis van de richtlijn exploitanten verplichten tot het treffen van preventieve maatregelen of herstelmaatregelen, indien schade dreigt of is opgetreden.

In de bijlage bij de richtlijn staat een opsomming van (potentiële) vervuilende activiteiten waarvoor de veroorzakers mogelijk aansprakelijk kunnen worden gesteld voor het tegengaan of vergoeden van milieuschade. Ook bodemvervulling met een potentiële risico op het schaden van de menselijke gezondheid is onder milieuschade gevat. De opslag van CO\textsubscript{2} zal in de vorm van een bijlage (III) aan de richtlijn worden toegevoegd. Hierbij wordt uitgegaan van de aannemer dat een gesloten opslag zal worden overgedragen aan de Staat, indien is aangetoond dat de opslag veilig is. Op dat moment verliest de richtlijn haar werking.

3. Richtlijn 1996/61/EG van de Raad inzake geïntegreerde preventie en bestrijding van verontreiniging

De richtlijn inzake geïntegreerde preventie en bestrijding van verontreiniging (IPPC, in Nederland aangeduid als ‘gpbv’) beoogt milieuverontreiniging door grote industriële activiteiten en intensieve veehouderij te voorkomen en te bestrijden. De milieuvergunning, inclusief voorschriften en toezicht, is het instrument voor de bestrijding en preventie van verontreiniging. Om een milieuvergunning te verkrijgen, moet een bedrijf tenminste de ‘Beste Beschikbare Technieken’ (BBT) toepassen. Daaronder
worden de meest doeltreffende technieken om milieuverontreiniging te bestrijden verstaan, rekening houdend met de economische en technische haalbaarheid.

Het transport en de opslag van CO₂ zullen niet onder de werking van de IPPC richtlijn worden gebracht. De afvang van CO₂ wordt echter wel een IPPC-pligtige activiteit, zodat daarbij ten minste gebruik moet worden gemaakt van de best beschikbare technieken.

4. Richtlijn 1997/11/EG van de Raad tot wijziging van Richtlijn 85/337/EEG betreffende de milieu-effectbeoordeling van bepaalde openbare en particuliere projecten

De Richtlijn betreffende de milieu-effectbeoordeling (mer-richtlijn) vormt de wijziging van de oorspronkelijke mer-richtlijn uit 1985 (85/337/EEG) en bevat een preventieve benadering van milieubescherming. Alvorens toestemming wordt gegeven voor bepaalde ingrijpende projecten moet een beoordeling worden gemaakt van de effecten die ze op het milieu kunnen hebben. Het bevoegde gezag dat de vergunning verleent, is op deze manier op de hoogte van de gevolgen. Om deze beoordeling mogelijk te maken, moet de initiatiefnemer informatie over het project verschaffen. Ook moeten het publiek en bepaalde overheden worden geraadpleegd. De MER-plicht is reeds besproken in hoofdstuk 1.4.

De mer-richtlijn zal worden uitgebreid met de afvang (vanaf 1,5 Mton per jaar), het transport (analoog aan de huidige buisleidingen) en de opslag van CO₂, zodat voor deze activiteiten (boven de drempelwaarde) een beoordeling van de milieueffecten moet worden gemaakt.

5. Richtlijn 2001/42/EG van het Europees Parlement en de Raad betreffende de beoordeling van de gevolgen voor het milieu van bepaalde plannen en programma’s

De richtlijn betreffende de beoordeling van de gevolgen voor het milieu van bepaalde plannen en programma’s (Strategische Milieubeoordeling - SMB-richtlijn) verplicht het bevoegde gezag de milieubeoordeling uit te voeren voor bepaalde plannen en programma’s die aanzienlijke effecten op het milieu kunnen hebben. In Nederland is de strategische milieu beoordeling onder gebracht in de Plan-m.e.r. procedure.

De SMB-richtlijn zal worden uitgebreid met de afvang (vanaf 1,5 Mton), het transport (analoog aan de huidige buisleidingen) en de opslag van CO₂. Plannen en programma’s die deze activiteiten mogelijk maken, moeten vooraf worden gegaan door een strategische milieubeoordeling.

6. Richtlijn 1999/31/EG betreffende het storten van afvalstoffen

De richtlijn inzake het storten van afvalstoffen (Richtlijn storten), die in 1999 is vastgesteld, legt een reeks gedetailleerde voorschriften vast waaraan afvalstortplaatsen moeten voldoen. Doel is de negatieve gevolgen te voorkomen of te beperken die stortplaatsen kunnen veroorzaken, zoals verontreiniging van water, grond en lucht en emissies van methaan. Beschikking 2003/33, Bijlage A bevat een veiligheidsbeoordeling voor het aanvaarden van afval in ondergrondse opslagplaatsen. Het doel van de bijlage is het voorkomen van schade door het verplaatsen/opslaan van afvalstoffen in opslagplaatsen in de ondergrond. Onder bepaalde voorwaarden is het ondergronds opslaan van afvalstoffen toegestaan.
De Richtlijn storten is een uitwerking van de Kaderrichtlijn Afvalstoffen en omvat alle daarin genoemde afvalstoffen. Zoals onder punt 1 reeds uiteengezet is, vormt opgeslagen CO\textsubscript{2} een uitzondering, waardoor de initiatiefnemer niet meer toekomt aan directe toetsing aan de Richtlijn storten. Met behulp van overige instrumenten (zoals hoofdstuk 10 Wm) wordt een goede beheersing zoals bedoeld in de Richtlijn storten echter voldoende gewaarborgd.

7. Voorstel Richtlijn CO\textsubscript{2} -opslag / Voorstel ETS Richtlijn / CCS monitoring
Het Europees Parlement en de Raad hebben een voorstel gedaan voor een Richtlijn CO\textsubscript{2}-opslag en de bijbehorende mededeling. De afvang, het transport en de opslag van CO\textsubscript{2} worden gezien als belangrijke instrumenten voor de aanpak van klimaatveranderingsproblemen. De Europese Commissie wil de milieurisico’s van deze instrumenten beheersen, door via de richtlijn afvang en transport van CO\textsubscript{2} te onderwerpen aan de bestaande IPPC-richtlijn en de mer-richtlijn, welke op hun beurt worden aangepast aan de nieuwe richtlijn. Daarnaast beoogt de richtlijn met name de opslag van CO\textsubscript{2} te onderwerpen aan regels en (opslag)vergunningplichtig te maken, met daarbij de eis van financiële zekerheid om aansprakelijkheid tijdens de injectie te dekken.

Lidstaten dienen erop toe te zien dat er eerlijke en open toegang is tot transportfaciliteiten en opslaglocaties voor CO\textsubscript{2}. Voor de opslag van CO\textsubscript{2} dienen lidstaten zorg te dragen voor non-discriminatoire vergunningverlening.

De richtlijn stelt voorts eisen aan de opslagvergunning, de wijze van monitoring van opgeslagen CO\textsubscript{2} (volgt later in meer detail, in samenhang met ETS), inspecties, maatregelen in geval van lekkages, het stellen van financiële zekerheid voorafgaand aan de vergunningverlening en aan de sluiting van velden waarin CO\textsubscript{2} is opgeslagen. De richtlijn legt het toezicht, de vergunningverlening en de lange termijn verantwoordelijkheid voor CO\textsubscript{2}-opslag bij de overheid.

In de bijbehorende mededeling en het Impact Assessment (welke mede brondocument is voor het onderhavige MER) geeft de Commissie aan op welke wijze grootschalige CCS-projecten aangepakt moeten worden. Met behulp van de demonstratieprojecten hoopt de Commissie de techniek van CCS zover te brengen, dat deze vanaf 2020 een financieel aantrekkelijke klimaatmaatregel kan zijn. Rond de demonstratieprojecten moet een kennisnetwerk opgericht worden, zodat geleerd kan worden van de ervaringen bij de demonstratieprojecten.

3.3.3. Rijk
Bovengenoemde Europese richtlijnen zijn of worden in het Nederlandse recht en beleid geïmplementeerd. Deze paragraaf gaat in op de implementatie van de richtlijnen in de Mijnbouwwet, Wet milieubeheer, Wet bodembescherming, IPPC en LAP.
Mijnbouwwet
De Mijnbouwwet heeft sinds 2003 een scala aan andere wetgeving ten aanzien van mijnbouwactiviteiten vervangen. Bij de totstandkoming van de wet is ook de opslag van stoffen nadrukkelijk geadresseerd, waarbij naast de opslag van aardgas gewezen is op CO₂-opslag. De Mijnbouwwet, met name het vergunningsstelsel en besluitvorming door EZ, reguleert het gebruik van de ondergrond. De Mijnbouwwet biedt nu reeds de instrumenten die de EU voorziet in haar voorstellen, met name de exploratievergunning, de opslagvergunning (inclusief de instemming op het zogeheten ‘Opslagplan’), de onafhankelijke inspectie via onder meer het Staatstoezicht op de Mijnen en diverse algemene regels rond het ontwerpen, opereren en monitoren van mijnbouwwerken waar stoffen worden opgeslagen.

Recent (mei 2008) is een wetsvoorstel in verband met het stimuleren van actief gebruik van vergunningen voor opsporing, winning en opslag gepubliceerd (TK 2007-2008, 31479). Dit voorstel maakt het mogelijk dat vergunningen makkelijker kunnen overgaan naar derden, zodat velden beter benut kunnen worden. Dat geldt tevens voor CO₂-opslag waar de wetgever het belangrijk vindt “dat lege, onbenutte gasvelden in bestaande vergunningen worden vrijgemaakt en beschikbaar komen voor derden” (MvT, pagina 6).

Wet milieubeheer
De Wet milieubeheer (Wm) is sinds maart 1993 in werking en is een zogenaamde kaderwet, die algemene regels bevat ten aanzien van milieubeheer. Specifieke regels zijn uitgewerkt in besluiten of ministeriële regelingen. Voor mijnbouw is de minister van EZ aangewezen als bevoegd gezag (artikel 8.2 lid 3 Wm). Een uitzondering daarop is de berging van afvalstoffen, waarvoor de provincie sinds 2003 bevoegd is.

Hoofdstuk 7 Wm
Sinds 1993 is de mer-richtlijn geïmplementeerd in hoofdstuk 7 van de Wm. De uitwerking van hoofdstuk 7 Wm is op zijn beurt vastgelegd in het Besluit milieu-effectrapportage 1994 (hierna: Besluit m.e.r.). In de bijlage behorende bij het Besluit m.e.r. zijn vier onderdelen (A, B, C en D) opgenomen met daarin een lijst van m.e.r.-plichtige en beoordelingsplichtige activiteiten.

Het Besluit m.e.r. bevat in Onderdeel C van de bijlage een overzicht van categorieën activiteiten waarvoor een (plan- en/of besluit-) milieueffectrapport moet worden opgesteld. De opslag van CO₂ is opgenomen in Onderdeel C, categorie 18.5. In deze categorie wordt de oprichting van een inrichting bestemd voor het storten of in de bodem brengen van niet-gevaarlijke afvalstoffen, niet zijnde baggerspecie, als m.e.r.-plichtig aangemerkt. Alvorens CO₂ mag worden opgeslagen, dient een milieueffectrapport te worden opgesteld.

Op 28 september 2006 is de Europese Richtlijn voor de Strategische Milieu Beoordeling (SMB) in hoofdstuk 7 van de Wm geïmplementeerd. In het Besluit m.e.r. is een uitwerking van de bepalingen van de Wm ten aanzien van de strategische milieubeoordeling te vinden. In kolom 3 van de onderdelen C en D van de bijlage worden de plannen en programma’s weergegeven waarvoor een strategische milieubeoordeling moet worden opgesteld.
Onderdeel D van de bijlage bij het Besluit m.e.r. vermeldt de activiteiten die alleen in bepaalde omstandigheden belangrijke nadelige gevolgen kunnen hebben en waarvoor een beoordelingsplicht geldt.

Hoofdstuk 10 Wm

Voor de opslag van CO\textsubscript{2} is het afvalstoffenhoofdstuk van de Wm (hoofdstuk 10) mede van belang. In artikel 10.1 Wm is bepaald dat een ieder die handelingen met betrekking tot afvalstoffen verricht, de plicht heeft de (nadelige) gevolgen van zijn handelingen te voorkomen of te beperken. Deze verplichting wordt ook wel de zorgplicht genoemd. Bij de opslag van CO\textsubscript{2} heeft de exploitant de plicht ervoor te zorgen dat negatieve effecten op het milieu worden voorkomen of zoveel mogelijk worden beperkt.

Doelmatigheidstoets

Degene die verwijderingshandelingen met betrekking tot afvalstoffen verricht, dient daartoe een zogenaamde ‘doelmatigheidstoets’ te doorlopen, hetgeen wil zeggen dat het beheer zodanig is ingericht dat rekening wordt gehouden met het geldende afvalbeheersplan (zie LAP), de voorkeursvolgorde van verwerking, effectieve en efficiënte verwijdering en een adequaat toezicht (artikel 1.1 Wm). Deze doelmatigheidselementen komen in dit MER aan de orde met uitzondering van preventie. Preventie van CO\textsubscript{2}-emissies is onderdeel van het totale klimaatpakket, terwijl dit MER juist betrekking heeft op opslag.

Hoofdstuk 17 Wm

Inmiddels is (sinds 1 juni 2008) aan hoofdstuk 17 van de Wm een nieuwe titel toegevoegd: titel 17.2 "maatregelen bij milieuschade of een onmiddellijke dreiging daarvan". Met deze nieuwe artikelen in de Wet milieubeheer heeft de wetgever de Richtlijn milieuaansprakelijkheid (2004/35/EG) in Nederlandse regelgeving geïmplementeerd.

Titel 17.2 Wm verplicht de veroorzaker van "grotere" gevallen van dreigende of reeds ontstane milieuschade maatregelen te nemen om deze schade te voorkomen, of indien de schade reeds ontstaan is, deze te beperken en te herstellen. Ook kan het bevoegd gezag eisen dat maatregelen worden genomen. Het bevoegd gezag kan deze maatregelen ook zelf nemen. In dat geval moeten de kosten worden verhaald op de veroorzaker. Hiermee wordt handen en voeten gegeven aan het beginsel “de vervuiler betaalt”.

Wet bodembescherming

De uitgangspunten uit de Richtlijn milieuaansprakelijkheid zijn tevens terug te vinden in de Wet bodembescherming. In deze wet staat het principe ‘de vervuiler betaalt’ tevens centraal. Degene die met zijn handelingen milieuvervuiling veroorzaakt, is aansprakelijk voor de kosten daarvan. Indien het bevoegde gezag zelf de maatregelen neemt ter voorkoming of herstel van milieuschade, dan kunnen de kosten hiervoor (achteraf) op de veroorzaker worden verhaald. De Wet bodembescherming bepaalt dat in het belang van de bescherming van de bodem bij AMvB nadere regels kunnen worden gesteld.
Lozingenbesluit

Eén van de besluiten is het Lozingenbesluit bodembescherming. Bepaalde (vloei)stoffen mogen op basis van dit besluit niet worden geloosd in de bodem, tenzij is voldaan aan de gestelde randvoorwaarden. In de genoemde doelmatigheidstoets zullen tevens de elementen worden meegenomen die noodzakelijk zijn voor een dergelijke ontheffing van het besluit.

Besluit Stortplaatsen en Stortverboden afvalstoffen (BSSA).

Een ander besluit is het Besluit Stortplaatsen en Stortverboden afvalstoffen (BSSA). Handelingen met betrekking tot afvalstoffen vallen onder het LAP. Indien deze afvalstoffen worden gestort, geldt het BSSA. In het geval van CO\textsubscript{2} is in beginsel zowel het LAP als het BSSA van kracht. Echter nu het LAP niet van toepassing is verklaard, ontstaat de vraag of het BSSA dit wel is. VROM heeft aangegeven dat bij CO\textsubscript{2}-opslag geen sprake is van storten (zie boven) en derhalve het BSSA niet van toepassing zal zijn.

IPPC

De IPPC-Richtlijn verplicht Europese lidstaten grote milieuvervuilende bedrijven te reguleren met een integrale vergunning. Het gaat om bedrijven in de energiesector, metaalproductie en -verwerking, chemie, afvalsector en agro-voedingsindustrie.

De richtlijn verplicht bedrijven de best beschikbare technieken te gebruiken om hun verontreinigingen te beperken en zo min mogelijk afval, energie en grondstoffen te gebruiken. Bestaande IPPC-inrichtingen moesten uiterlijk vanaf 31 oktober 2007 aan de richtlijn voldoen. Nederland heeft de richtlijn verankerd in de Wet milieubeheer (Wm) en de Wet verontreiniging oppervlaktewateren (Wvo).

Het transport en de opslag van CO\textsubscript{2} zijn geen IPPC-activiteiten. Wel dienen de onderdelen op basis van de wetgeving en de richtlijnen te voldoen aan de Best Beschikbare Technieken (BBT). Aan de afvang op de raffinaderij wordt hier geen verdere aandacht gegeven omdat dit reeds een onderdeel is van de vigerende (IPPC) vergunning van Pernis. De volgende BBT-documenten zijn ondermeer gehanteerd in dit MER:

- BREF Koelinstallaties (energieconsumptie, geluid, lekkage etc.).
- BREF Op- en overslag (voor CO\textsubscript{2}-opslag en voor leidingen en compressoren).
- Nederlandse emissierichtlijnen (NeR).
- PGS 3: richtlijnen voor kwantitatieve risicoanalyse, waarbij risicoscenario’s worden doorgerekend en maatgevende risicocontouren worden bepaald.
- Nederlandse Richtlijnen Bodembescherming (NRB) voor de beschermende voorzieningen in compressorgebouwen en op locatie.
Het landelijk afvalbeleid is weergegeven in het Landelijke Afvalbeheersplan (LAP). Bij de laatste wijziging van het LAP (maart 2007) is in paragraaf 18.4 de passage opgenomen dat dit beleid niet van toepassing is op de demonstratieprojecten voor CO2-opslag. Zodra duidelijk is onder welke voorwaarden de opslag van CO2 in de ondergrond in Nederland mogelijk is, worden de voorwaarden voor deze opslag in het LAP opgenomen.

3.3.4. Provincie Zuid-Holland

Doordat het te injecteren CO2 momenteel kwalificeert als een ‘afvalstof’ die afkomstig is van buiten de inrichting (dat wil zeggen van buiten beide injectielocaties), is de provincie Zuid-Holland het bevoegde gezag voor het ondergrondse deel van de inrichting.

Vanaf juli 2008 is de nieuwe Wet ruimtelijke ordening van kracht. Streekplannen worden niet meer opgesteld en komen op termijn te vervallen. Een provinciale structuurvisie komt hiervoor in de plaats. De Ruimtelijke Structuurvisie Regio Rijnmond bestrijkt het grondgebied van alle bij de stadsregio Rotterdam aangesloten gemeenten, waaronder de gemeente Barendrecht.

De provincie Zuid-Holland heeft tot nu toe geen plan-MER uitgevoerd om de milieueffecten van verschillende CO2-opslaglocaties in Zuid-Holland te bepalen. Er is dan ook geen beleid op basis waarvan locaties voor CO2-opslag zijn aangewezen. Om specifieke elementen van het plan-MER toch aandacht te geven, worden deze in dit MER behandeld (paragraaf 2.2). In deelrapport 3 van dit MER wordt vervolgens extra aandacht besteed aan de locatiekeuze.

Om een ondergronds ruimtetekort te voorkomen, heeft de provincie doelen voor de periode 2006 – 2010 opgesteld. Er dient een operationeel beleid te worden ontwikkeld. De provincie zal het initiatief nemen om een afwegingskader te ontwikkelen voor ondergronds ruimtegebruik bij conflicterende situaties. Dit kader geldt in ieder geval voor koude-warmteopslag, wateropslag, bodemsanering en brijnlozingen.

De provincie laat momenteel een onderzoek uitvoeren naar de mogelijkheden van het benutten van aardwarmte of geothermie. Dit is een technisch haalbaarheidsonderzoek, waarbij wordt nagegaan op welke diepe geschikte waterlagen voorkomen. In het verlengde hiervan wordt verkend waar benutting van deze geothermie haalbaar zou kunnen zijn (Geothermie Provincie Zuid-Holland, Potentieelstudie en 10 haalbaarheidsanalyses, 2e concept, juni 2008). Deelrapport 3 gaat nader in op de eerste bevindingen in dit rapport.

3.3.5. Gemeente Barendrecht

De gemeente Barendrecht heeft een ‘Concept-visie op Barendrecht 2025’ ontwikkeld (januari – februari 2008). In dit document geeft de gemeente aan dat Barendrecht een bijdrage zal leveren aan het mondiale streven de opwarming van de aarde tegen te gaan. Dit kan volgens de gemeente gerealiseerd worden door onder andere energiebesparende maatregelen (woningbouw, vervoersmiddelen) en wellicht ondergrondse CO\(_2\)-opslag (mits kan worden aangetoond dat dit geen risico’s met zich meebrengt).

3.4 Ruimtelijke ordening

Het plangebied (leidingtracé en opslaglocaties) beslaat de gemeenten Rotterdam, Barendrecht en Albrandswaard. Het ruimtelijke ordeningsbeleid is van belang vanwege de inpassing van de activiteiten in de omgeving. In het voorgaande onderdeel is al ingegaan op de koppeling van het CCS-beleid en de ruimtelijke plannen van de provincie Zuid-Holland. Onderstaand wordt aanvullend ingegaan op een drietal aspecten, te weten regelgeving met betrekking tot ecologisch waardevolle gebieden, mogelijke wijzigingen op gemeentelijk niveau in bestemmingsplannen en de aanzet tot een driedimensionaal ruimtelijk beleid vanuit het ministerie van VROM.

Ecologie

Dit betekent dat op grond van de Natuurbeschermingswet 1998 onderzocht zal moeten worden of één of meerdere van de voorgenomen activiteiten significante gevolgen kunnen hebben op het Natura 2000-gebied. Indien significante gevolgen niet uitgesloten kunnen worden, dient er ook een passende beoordeling op grond van de Natuurbeschermingswet 1998 te worden gemaakt. Tevens dient getoetst te worden op het beschermingsregime van de Ecologische Hoofdstructuur en de Flora- en faunawet.
Bestemmingsplannen

In de vigerende bestemmingsplannen is de injectielocatie Barendrecht aangeduid als ‘gaswin- en verwerkingsgebied’ en de locatie Barendrecht-Ziedewij als bestemd voor ‘gaswinningsdoeleinden’. Deze bestemming moet aangepast worden aan de toekomstige bestemming van het plangebied. Dat geldt ook voor het gehele leidingtracé (op verzoek van de gemeenten). Dit is nog niet in het bestemmingsplan opgenomen.

Ruimtelijke Ordeningsplannen voor de ondergrond

Ten aanzien van beleid vermeldt de notitie dat de Beleidsbrief Bodem, de Europese Bodemstrategie en de Europese Grondwaterrichtlijn duurzaam gebruik van de ondergrond centraal stellen. In de beleidsbrief wordt gesteld dat er geen onherstelbare schade aan de ondergrond mag worden toegebracht. Om duurzaam met de ondergrond om te kunnen gaan, moet inzicht komen in de effecten van het gebruik van de ondergrond. Nadelige effecten van zowel ondergronds als bovengronds gebruik zullen zowel in plaats als in tijd zoveel mogelijk voorkomen moeten worden.

Om potentiële conflicten tussen verschillende vormen van ruimtegebruik te voorkomen, moet volgens de Beleidsbrief Ruimtelijke Ordening Ondergrond de ondergrondse ruimte geordend worden. De lagenbenadering zoals in de Nota Ruimte is genoemd, is daarvoor het uitgangspunt. Dat betekent dat bij ruimtelijke afwegingen serieus notie moet worden genomen van alle ondergrondse facetten. Door dit te doen kunnen mogelijke problemen meer in samenhang opgelost worden voor een duurzaam gebruik van de ruimte en bodem.

Op dit moment ontplooiert VROM verscheidene initiatieven om dit te ondersteunen. Zo is er een ‘Handreiking plannen met de ondergrond voor het stedelijk gebied’ ontwikkeld en is de ‘Handreiking plannen met de ondergrond voor het landelijk gebied’ in ontwikkeling.
4. Gebiedsbeschrijving en autonome ontwikkelingen

4.1 Inleiding

In dit hoofdstuk worden de kenmerken beschreven van het gebied waarbinnen het project is gepland. Het studiegebied wordt gevormd door de directe omgeving van de drie componenenten in het project:

- De pijpleiding met directe omgeving,
- Plot 16, de locatie Barendrecht en de locatie Barendrecht-Ziedewij, met de directe omgeving.
- De ondergrondse aspecten, zoals de ligging van de reservoirs en de aanwezigheid van de putten, met daarbij de directe omgeving, waaronder de bovenliggende lagen.

De beschrijving richt zich op het regionale schaalniveau, maar tevens op de directe omgeving van projectonderdelen. Daarbij wordt aandacht besteed aan de mogelijke ontwikkelingen in het gebied en de mate waarin hiermee bij het project rekening moet worden gehouden.

4.2 Gebiedskenmerken

Het studiegebied bevindt zich aan de zuidzijde van Nieuwe Maas bij Rotterdam, in de regio IJsselmonde. Deze regio wordt aan de zuidzijde begrensd door de Oude Maas. Kaart 1A in de kaartenbijlage geeft een overzicht van het gebied.

Het polderlandschap wordt doorkruist door oude dijken, zoals de Middeldijk en de Essendijk. De bovenkant van deze dijken bevindt zich op circa NAP +3 meter, dus ongeveer 4 meter boven het omringende maaiveld. De dijken vormen de begrenzing van de noordelijke polder Binnenland, de centraal gelegen polder Buitenland en de zuidelijk gelegen Zuidpolder. De structuur van laag gelegen polders omringt door dijken geeft een bakstructuur, waarmee onder meer bij mogelijke overstroming rekening gehouden moet worden.

Havengebied

In het havengebied bevindt zich Plot 16 en het begin van de leidingenstrook. De leidingenstrook en in het verlengde hiervan de buisleidingenstraat bevinden zich voor een groot deel parallel aan de A15, tot ten oosten van het Knooppunt Beneluxplein. Daar buigt de leiding af naar het zuiden en bevindt deze zich vervolgens in het polderlandschap.
Polderlandschap
Het oostelijke deel met beide injectielocaties bevindt zich op de rand van stedelijk gebied en een meer open landelijk gebied.

Er komen daarnaast veel ondergrondse kabels en leidingen voor, ondermeer in de Buisleidingenstraat, die een verbinding vormt tussen de Rotterdamse haven en Antwerpen.

In het gehele gebied komt veel industrie voor, waarbij de nadruk ligt op het westelijk deel. In het oostelijke deel van het projectgebied is meer woningbouw aanwezig, waaronder nieuwbouwwijken aan de zuidzijde van Barendrecht.

Op basis van de verschillende projectonderdelen, vindt de nadere beschrijving van het studiegebied plaats in diverse deelgebieden:

- Havengebied van Rotterdam, waarin de raffinaderij en Plot 16 zich bevinden.
- Leidingtracé, in leidingenstrook en Buisleidingenstraat, vanaf Pernis tot ten zuiden van de Smitshoek, en langs de Oude Maas, vanaf de zuidzijde van de Smitshoek tot de locatie Barendrecht.
- Omgeving locatie Barendrecht, de zuidrand van Barendrecht.
- Omgeving locatie Barendrecht-Ziedewij.

Onderstaand wordt vanaf paragraaf 4.2.1 nader ingegaan op deze deelgebieden. Daarbij wordt tevens aandacht besteed aan kenmerkende aspecten van de gemeente Barendrecht.

4.2.1. Deelgebied Havengebied
Het logistiek-industrieel complex van de mainport Rotterdam ontwikkelt zich in de zuidelijke zone, de ‘Zuidflank’ tussen de Maasvlakte en Ridderkerk die buiten de regio afbuigt langs de A16 richting Moerdijk (ruimtelijk plan regio Rotterdam 2020). De afgelopen jaren is deze ontwikkeling voortgezet en vinden steeds nieuwe uitbreidingen plaats, zoals de uitbreiding Maasvlakte 2. Het verkeerswegennet wordt steeds verder ontwikkeld ter verbetering van de ontsluiting. Buiten deze kern is een ring van kleinere toe- en afleveringsbedrijven, kantoren en kleinbedrijven die in en rond de haven activiteiten ontplooien.
De Shell raffinaderij te Pernis bevindt zich in een landschap dat wordt gedomineerd door raffinaderijen, pijpleidingen en opslagtanks. De totale oppervlakte van de raffinaderijen van Shell beslaat meer dan 500 hectare. Plot 16 ligt aan de westelijke rand van het raffinaderijencomplex. Vanuit Plot 16, via de leidingstrook langs de Vondelingenweg, gaan verschillende leidingen naar de afnemers van CO$_2$.

Het havengebied bestaat uit opgespoten grond. Het maaiveld bevindt zich op circa NAP +4,5 m. Bij de aanleg van het havengebied is de grond met slib opgehoogd.

4.2.2. Deelgebied leidingtracé

Een opvallend element in het projectlandschap is de woningbouw. De regio is dichtbevolkt met zeer afwisselende bebouwing zoals de karakteristieke tuinderwoningen langs oude dijksjes, afgewisseld met nieuwbouwprojecten in rechte en gebogen wijken. Een voorbeeld van een nieuwbouwwijk is Carnisselande. De bouw van deze Vinexwijk is in 1997 begonnen en moet tenslotte uit zo’n 7.500 woningen gaan bestaan.

Daarnaast is de 100 meter brede Buisleidingenstraat een wezenlijk onderdeel van dit landschap.

Het begrensde gebied bevat natuurwaarden, die integraal onderdeel uitmaken van het ecosysteem. Het is van belang vast te stellen in hoeverre het te realiseren project invloed kan uitoefenen op het Natura 2000-gebied op afstand. Dit wordt de externe werking genoemd. Er kunnen twee projectfasen worden onderscheiden die een externe werking op het Natura 2000-gebied kunnen uitoefenen. De aanlegfase waarbij verstorende factoren zoals geluid en trilling kunnen optreden en de operationele fase waarbij het risico bestaat dat CO₂ uit de pijpleiding weglekt.

4.2.3. **Deelgebied Barendrecht**

Beide injectielocaties bevinden zich in de gemeente Barendrecht. De geschiedenis van Barendrecht gaat eeuwen terug. Al vóór de 13e eeuw is er sprake van bewoning in dit gebied en komen de namen Oost-Barendrecht, West-Barendrecht en Carnisse voor.
De gemeente Barendrecht telt 43.000 (juli 2007) inwoners op een oppervlakte van bijna 22 km². Het huidige Barendrecht bestaat uit twee delen, die van elkaar gescheiden zijn door de A29. Het gedeelte ten westen van de A29 omvat de VINEX-locatie Carnisselande, het gedeelte ten oosten van de A29 is het ‘oude’ Barendrecht.

In 1997 is begonnen met de aanleg van de Vinexwijk Carnisselande. Carnisselande ligt ten westen van de A29, ten zuiden van de A15, ten noorden van de Oude Maas, gaat in westelijke richting door tot en met de voormalige dorpskern Smitshoek en grenst aan het natuurgebied de Carnisse Grienden. Deze Vinexwijk moet tenslotte uit zo’n 10.000 woningen gaan bestaan, waarvan circa 7.500 in Carnisselande (gemeente Barendrecht) en 2.500 in Portland (gemeente Albrandswaard).

Aan de zuidzijde van Barendrecht bevindt zich de Kilweg, met het bebouwd gebied aan de noordzijde en het open gebied aan de zuidzijde. De Kilweg gaat ten oosten van de locatie Barendrecht–Ziedewij over in de Boezemweg.

4.2.4. Locatie Barendrecht

Kaart 1D in de kaartenbijlage geeft een overzicht van de situatie nabij de locatie Barendrecht. Oorspronkelijk bestaat de locatie uit twee delen, een puttenlocatie waar gaswinning plaats vindt en een gedeelte met de Gas Behandeling Installatie (GBI). Voor dit project zal de oorspronkelijke locatie worden opgedeeld in twee locaties, de CO₂-injectielocatie Barendrecht onder beheer van SCS en de GBI-locatie onder blijvend beheer van NAM. Nadat de gaswinning op de locatie Barendrecht is gestopt blijft de GBI gehandhaafd en in bedrijf, omdat de GBI het gas uit de omliggende velden ontvangt en behandelt.

De CO₂-injectielocatie Barendrecht bevindt zich in de zogeheten Zuid Polder. Het maakt onderdeel uit van het bedrijventerrein Vaanpark, gesitueerd naast de Rijksweg A29. Tegen de A29 op ongeveer 200 meter van de CO₂-injectielocatie bevindt zich de Barendrechtse vestiging van IKEA. De (Vinex) woningbouwlocatie Carnisselande ligt ten westen van de locatie, met de dichtstbijzijnde woningen op circa 250 meter van de locatierand.

4.2.5. Locatie Barendrecht-Ziedewij

Kaart 1E in de kaartenbijlage geeft een overzicht van de situatie nabij de locatie Barendrecht–Ziedewij. De locatie Barendrecht-Ziedewij ligt ten oosten van Barendrecht op ongeveer 175 meter van de rondweg die de zuidelijke begrenzing vormt van de bebouwde kom van Barendrecht. De dichtstbijzijnde woonbebouwing is gelegen op een afstand van circa 200 meter. De locatie is omgeven door landbouwgronden. Op ongeveer 500 meter in zuidelijke richting bevindt zich een recreatiegebied, met daarbinnen een kampeerterrein. Barendrecht-Ziedewij bestaat uit een putterrein met vier putten waar tot op heden aardgas uit gewonnen wordt.
4.2.6. Ondergrond

In hoofdstuk 3 is al aandacht besteed aan de ruimtelijke ordening van de ondergrond. Het project ondergrondse opslag CO\textsubscript{2} in Barendrecht heeft een belangrijke ondergrondse component, zodat hierbij rekening moet worden gehouden met de huidige ondergrondse functies, mogelijke toekomstige ondergrondse functies en de mogelijke beïnvloeding van CO\textsubscript{2}-opslag op andere ondergrondse functies.

Gebruiksfuncties voor de ondergrond zijn gekoppeld aan de eigenschappen van de verschillende ondergrondse lagen. Hierin zijn in Zuid-Holland vooral van belang:

- de ondiepe bodemlaag, tot enkele meters onder maaiveld;
- de dieper liggende watervoerende pakketten, vanaf 10 m tot maximaal 200 m diepte;
- de diepe gesteenten met olie- en gasreservoirs, vanaf 1.500 m diepte.

De afbakening tussen de laag met watervoerende pakketten tot maximaal 200 meter diepte en de diepe ondergrond vanaf meer dan 1.000 meter diepte is enigszins arbitrair. In de tussenliggende zone zijn geen gebruiksfuncties voorzien.

Ondiepe bodemlaag

Het project heeft ter plaatse van de locaties en het pijpleidingtracé mogelijk effect op de ondiepe bodemlaag. De ondiepe bodemlaag wordt bij werkzaamheden vergraven. Voor deze laag is het van belang rekening te houden met archeologische, ecologische en landschappelijke waarden. Deelrapport 2 gaat verder in op de huidige situatie voor deze milieuaspecten en de mogelijke beïnvloeding.

Waterpakketten tot 200 meter diepte

Voor de diepere pakketten bevindt het studiegebied zich rondom de gasreservoirs en in het bijzonder direct bij de putten. Voor de watervoerende lagen dient rekening gehouden te worden met de winning van zoet grondwater, maar ook voor gebruik van koude-warmte opslag. Hiervoor zijn de volgende aandachtsgebieden nabij de reservoirs benoemd:

- Grondwateronttrekkingen in het tweede en derde watervoerend pakket.
- Koude Warmte Opslag (KWO) in het tweede watervoerend pakket.
In deelrapport 3 is mogelijke lekkage van CO\(_2\) uit het reservoir naar bovenliggende lagen onderzocht. Daaruit blijkt dat ook in extreme situaties geen lekkage door de ondergrond naar ondiepe waterpakketten zal optreden. Theoretisch is het alleen via lekkage bij de putten mogelijk dat CO\(_2\) in de bovenste 200 meter terecht komt. In de directe omgeving van de putten bevinden zich geen beschermd gebied in de waterlagen (zoals bovenstaand is aangegeven) en zijn geen KWO-projecten aanwezig.

Net als de opslag van CO\(_2\) voorziet de Mijnbouwwet in een vergunning- en afstemmingsstelsel voor de winning van aardwarmte (geothermie) op diepten beneden de 500 meter.

Figuur 4.3. Ligging diepe waterlagen met geothermie mogelijkheden.

4.3 Ontwikkelingen

Verschillende ontwikkelingen in de regio Rotterdam Rijnmond kunnen van invloed zijn op de effecten van voorgenomen activiteit. Bij de beschrijving van ontwikkelingen wordt onderscheid gemaakt tussen:

- mogelijk of wellicht wenselijke ontwikkelingen;
- ontwikkelingen die al min of meer gestart zijn of naar alle waarschijnlijkheid tijdens het project al hebben plaatsgevonden (autonome ontwikkelingen).
Onderstaand wordt een overzicht gegeven van de mogelijke ontwikkelingen, gebaseerd op voornemens en beleid. In paragraaf 4.4 wordt ingegaan op de autonome ontwikkelingen.

Intensivering ruimtegebruik
Gelet op de ruimtelijke plannen voor de regio, onder meer het Ruimtelijk Plan Regio Rotterdam (RR2020) en de Bestemmingsplannen voor het betreffende gebied, is de voorziene intensivering een verdere intensivering en verstregeling van tuinbouw, woningbouw en industrie. Woningbouw, industrie en tuinbouw zijn door de voortgaande groei en intensivering in de loop der jaren naar elkaar toegegroeid en sterk verweven geraakt. Het is de verwachting dat die intensivering de komende jaren alleen maar zal toenemen. Ruimte is daardoor een schaars goed geworden.

Landschapspark Buytenland
Het onder het tweede Regionaal Groenblauw Structuurplan (RGSP2, paragraaf 5.2.2, regionaal beleid) genoemde, begrensde groengebied van 600 hectare ligt op het grondgebied van de gemeente Albrandswaard. In de nadere uitwerking voert Albrandswaard de regie, met nauwe betrokkenheid van provincie en regio. Het gebied heeft de naam ‘Landschapspark Buytenland’ gekregen, en er is een stuurgroep in het leven geroepen. Het is de bedoeling zowel de ontwikkeling van ‘Landschapspark Buytenland’ als ontwikkelingen in de directe omgeving zo nauw mogelijk op elkaar af te stemmen, onder meer: de Koedoodzone, de ‘aanlanding’ van een groene verbinding over A15 en spoort (4e deelproject PKB) nabij het noordelijk uiteinde van de Koedood, de omgeving van gemaal Breeman / Gaatkensplas / Carnissegrienden.

Barendrecht 2025
Binnen het studiegebied zijn diverse planvisies ontwikkeld. De planvisie “Barendrecht 2025” beschrijft ondermeer een ruimtelijke toekomstvisie. Hierin is te lezen dat de nadruk in de ruimtelijke ontwikkeling komt te liggen op bedrijventerreinen, verkeersontsluiting en woningbouw. Vooral aan de zuidkant van Barendrecht is ruimte voor natuur en recreatie. Zo is het gebied ten zuiden van de Gaatkensplas aangewezen als overgangszone tussen het stedelijke Carnisselande en de natuur en recreatiegebieden langs de Oude Maas. Daarnaast is de Zuidpolder bestemd voor verdere ontwikkeling op het gebied van extensieve recreatie. Voor woningbouw worden de komende jaren Lagewei en Vrouwenpolder verder ontwikkeld.

4.4 **Autonome ontwikkelingen**
Autonome ontwikkelingen hebben binnen het MER een aparte status, doordat de autonome ontwikkelingen onderdeel uitmaken van de referentiesituatie, waaraan mogelijke effecten worden getoetst. Hoewel op gemeentelijk niveau plannen zijn geformuleerd, zijn deze nog niet zodanig expliciet uitgewerkt, dat hiermee al rekening kan worden gehouden in het MER.
Externe ontwikkelingen

Er zijn drie autonome ontwikkelingen welke onderdeel uitmaken van de referentiesituatie:

- Met de ontwikkeling van het Landschapspark Buytenland zal wel rekening worden gehouden, vooral met betrekking tot de effecten op landschap, ecologie en geluid.
- Daarnaast heeft IKEA ten noorden van de locatie Barendrecht, aangegeven uitbreidingsplannen te hebben.
- Ten derde wordt meegenomen de aanleg door SBN van een leidingtunnel bij de kruising van het Beneluxplein.

Autonome ontwikkeling bij de injectielocaties

Verder wordt de toekomstige situatie bij de gaswinputten als autonome ontwikkeling gezien. In de huidige situatie vindt gaswinning plaats op de locatie Barendrecht. Als autonome ontwikkeling wordt gezien de stopzetting van de gaswinning. Dit betekent dat rekening wordt gehouden met de locatie in de huidige toestand, maar waarbij de gasput niet meer produceert. De nabijgelegen gasbehandelinginstallatie (GBI) van Barendrecht blijft bij de autonome ontwikkeling in bedrijf. Naar verwachting zal hier de komende jaren nog het aardgas van nog producerende velden in de omgeving worden verwerkt.

Bij de start van deel 1 zal de gaswinning bij de locatie Barendrecht-Ziedewij nog doorgaan. De winning stopt hier begin 2014. Als autonome ontwikkeling bij de toetsing van effecten bij de locatie Barendrecht–Ziedewij zal ook hier worden aangehouden dat de gaswinning is gestopt, zoals volgens plan begin 2014 zal gebeuren.
5. Technische beschrijving voorgenomen activiteit

5.1 Inleiding

In hoofdstuk 2 is een functionele beschrijving gegeven van de verschillende projectonderdelen. In dit hoofdstuk worden de relevante technische aspecten van deze onderdelen besproken.

- CO$_2$ bron;
- Compressiestation Plot 16;
- Transport pijpleidingtrace CO$_2$;
- Bovengrondse opslagfaciliteiten en putten locatie Barendrecht;
- Bovengrondse opslagfaciliteiten en putten locatie Barendrecht-Ziedewij.

Voor de diepe ondergrond komen aan bod:

- Reservoir Barendrecht;
- Reservoir Barendrecht-Ziedewij.

In aanvulling op de technische aspecten, worden calamiteitenscenario’s en bijzondere omstandigheden beschreven. Tenslotte wordt in de laatste paragraaf ingegaan op de verschillende lange termijn scenario’s die denkbaar zijn.

CO$_2$ speelt de centrale rol in dit project. De specifieke kenmerken van CO$_2$ zijn bepalend voor de keuzemogelijkheden en de beschermende maatregelen. Voorafgaand aan de beschrijving van de projectonderdelen, wordt daarom in paragraaf 5.2 eerst nader ingegaan op de eigenschappen van CO$_2$. In 5.3 wordt beschreven hoe binnen het project wordt omgegaan met CO$_2$.

5.2 De eigenschappen van CO$_2$

CO$_2$ komt van nature voor in de atmosfeer. Het stimuleert de groei van planten, waarbij CO$_2$ wordt omgezet in zuurstof. Het wordt chemisch als niet-gevaarlijk gezien. Het is niet explosief of brandbaar. Maar teveel CO$_2$ is niet gezond, voor mens, dier en plant. Onderstaand wordt nader ingegaan op de eigenschappen van CO$_2$, waarmee in het project in het bijzonder rekening moeten worden gehouden.

5.2.1 Kenmerken en eigenschappen

Onderstaand wordt ingegaan op de chemische kenmerken van CO$_2$. Vervolgens wordt beschreven hoe CO$_2$ van nature in de atmosfeer voorkomt.
Chemische aspecten

CO_2 is een chemische verbinding van een koolstofatoom (C) en twee zuurstofatomen (O) en wordt ook wel kooldioxide of in gasvorm koolzuurgas genoemd. CO_2 is kleurloos, reukloos en smaakloos. CO_2 is oplosbaar in water, onder vorming van koolzuur (dia)waterstofcarbonaat. CO_2 in water zorgt voor een lagere pH-waarde, wat inhoudt dat het water zuurer wordt. Het zure water kan kalk oplossen, waardoor kalksteen wordt aangetast.

Fasen en faseovergangen

Voor het project zijn drie fasen waarin CO_2 zich kan bevinden van belang. Indien puur CO_2 afkoelt tot minus 78 °C bevriest het tot zogenaamd koolzuursneeuw. Dit kan gebeuren als CO_2 met hoge druk vrijkomt in de atmosfeer (bijvoorbeeld bij een brandblusser). Normaal gesproken komt CO_2 voor in gasvorm. Bij een hoge druk en hoge temperatuur, zoals in reservoirs, kan CO_2 vloeibaar of zelfs superkritisch worden (de druk moet hoger zijn dan 74 bar en de temperatuur boven de 31°C).

![Diagram van fasen van puur CO2](image)

Aanwezigheid CO2 in de atmosfeer

De huidige concentratie van CO_2 in de atmosfeer is ongeveer 380 ppm (ppm staat voor parts per million). In procenten uitgedrukt komt dit neer op afgerond 0,04%. Sinds het begin van de industriële revolutie is de concentratie gestegen vanaf circa 280 ppm. De atmosfeer bestaat voor circa 78% uit stikstof (N_2) en 21% uit zuurstof (O_2). Van de resterende 1% in de atmosfeer, vormt CO_2 zoals gemeld ongeveer 0,04%.
Toename van CO₂-concentraties

Uit onderzoek uit boorkernen bij de Noordpool blijkt dat in de afgelopen honderdduizenden jaren de CO₂-concentraties niet zo hoog zijn geweest als nu. In het verleden, op geologische schaal wel, maar de mens heeft waarschijnlijk zulke hoge CO₂-concentraties in de atmosfeer niet meegemaakt. Waarnemingen tonen aan dat de concentratie blijft stijgen (zie ook figuur 1.2).

CO₂-kringloop

CO₂ wordt toegevoegd aan de atmosfeer bij de verbranding van natuurlijke brandstoffen, zoals olie, aardgas, steenkool of hout. Wanneer deze brandstoffen verbranden, ontstaat CO₂ samen met de zuurstof uit de lucht. Het CO₂ wordt gebruikt door planten bij fotosynthese, waarbij planten onder meer CO₂ opnemen en zuurstof weer afgeven aan de lucht. Doordat CO₂ wordt toegevoegd aan de atmosfeer en weer wordt opgenomen uit de atmosfeer kan een balans ontstaan. Door meer CO₂ toe te voegen aan de atmosfeer, terwijl het opnemend vermogen niet toeneemt, ontstaat een geleidelijk toenemende concentratie van CO₂ in de atmosfeer.

Menselijke beïnvloeding

Verstoring door extra CO₂ in de kringloop, wordt veroorzaakt door menselijk handelen. Dit surplus kan niet worden opgenomen door de kringloop. Hierdoor ontstaat een steeds grotere hoeveelheid CO₂ in de atmosfeer. Dit geeft hogere concentraties en daarmee versterking van het broeikaseffect. Het is een effect dat op wereldschaal optreedt, doordat het CO₂ goed mengt in de lucht. De concentratie van CO₂ in de atmosfeer wordt bepaald door de uitstoot van alle landen tezamen. De huidige emissies in Nederland door menselijk handelen, bedragen ongeveer 185 Mton per jaar.

Broeikaseffect

Hoewel het aandeel van CO₂ in de atmosfeer minder is dan 1%, leidt de aanwezigheid van CO₂ in de atmosfeer tot een toenemend broeikaseffect. Hierbij worden de zonnestralen die vanaf het aardoppervlak terugkaatsen, vastgehouden in de atmosfeer.

Gezondheid, gevaar en gebruik

Locale effecten door hoge concentraties CO₂ in de orde van grootte van 0,04% zijn nihil. Pas bij veel hogere concentraties kunnen effecten optreden. Mensen zijn gewend aan concentraties tot 0,1 % bijvoorbeeld in een kantooromgeving. In de Verenigde Staten geldt dat in een kantooromgeving gemiddeld over een periode van 8 uur de concentratie CO₂ maximaal 0,5% mag zijn.

Onderzoek wijst uit dat mensen bij een concentratie van 1% CO₂ nog geen fysiologische effecten ondervinden. Langere blootstelling aan concentraties boven 5% kan psychisch effect hebben, terwijl boven 10% tot bewusteloosheid kan leiden.

Vanaf 5% wordt over het algemeen de concentratie als mogelijk schadelijk gezien, mede afhankelijk van de tijdsduur. In een zeer grote hoeveelheid, bijvoorbeeld in een wolk en gedurende langere tijd, kan CO₂ gevaar opleveren, aangezien het zwaarder is dan zuurstof en daardoor zuurstof in de lucht tijdelijk kan verdringen. Een dergelijke wolk bestaat altijd tijdelijk aangezien het CO₂ zich vervolgens vermengt met de lucht.
Voorbeelden van toepassingen CO₂ in het dagelijks leven

- Koolstofdioxide komt voor in frisdranken, als ‘prik’. Daarnaast komt CO₂ voor in natuurlijke bronnen voor mineraalwater.
- CO₂ wordt gebruikt als blusmiddel in brandblusapparaten. Door uitzetting van CO₂ neemt de temperatuur sterk af, waardoor koolzuursneeuw ontstaat. Hiermee kunnen vloeistofbranden en branden van apparatuur onder stroom effectief geblust worden.
- In de vorm van koud ijs wordt CO₂ toegepast als damp op het toneel of in de disco.

5.2.2. Onder welke omstandigheden kan CO₂ gevaarlijk worden?

Uit bovenstaande blijkt dat CO₂ van nature voorkomt in de atmosfeer, bij de juiste concentraties van belang is voor de groei van planten en bomen, voorkomt in frisdranken en van nature in mineraalwaterbronnen. Nuttige toepassingen van CO₂ zijn mogelijk, omdat CO₂ niet brandbaar, explosief of giftig is. Dit geldt mits CO₂ in de juiste concentratie voorkomt. Doordat CO₂ niet brandbaar, giftig of explosief is, zal een installatie of pijpleiding met CO₂ minder gevaarlijk zijn (kleinere risicocontouren) dan een vergelijkbare installatie of pijpleiding met aardgas.

Zuurstofverdringing mogelijk

Er zijn omstandigheden bekend waaronder CO₂ wel gevaarlijk is. Hoewel CO₂ mengt in de lucht, is het als gas zwaarder dan lucht. Bij gebrek aan wind kan een stagnante wolk CO₂ een periode in stand blijven. Omstandigheden waaronder een stagnante wolk CO₂ kan ontstaan zijn bijzonder. Dit kan gebeuren indien:

- CO₂ langzaam vrijkomt in een afgesloten ruimte of een windstille verdiepte omgeving.
- CO₂ in grote hoeveelheden vrijkomt, maar met lage snelheid, zodat vermenging niet optreedt.

In beide gevallen geldt dat de CO₂-wolk alleen voor een wat langere periode kan bestaan indien zich een windstille situatie voordoet. Het moet niet mogelijk zijn dat zich een CO₂-wolk kan voordoen in de buurt van plaatsen waar mensen zich bevinden. Vanuit veiligheidsafwegingen vormen dit binnen het project belangrijke randvoorwaarden.

5.3 Het CO₂ zoals toegepast in het project

Het gehele project is gebaseerd op de opslag van CO₂. Daarom spelen de eigenschappen van CO₂ een belangrijke rol in het project. In de voorgaande paragraaf is meer generiek ingegaan op de kenmerken van CO₂. In deze paragraaf wordt beschreven hoe binnen het project wordt omgegaan met CO₂ en met de eigenschappen van CO₂.

In eerste instantie wordt ingegaan op de samenstelling van het CO₂ dat wordt aangeleverd vanuit de raffinaderij. De samenstelling zal niet veranderen bij compressie of transport. Vervolgens wordt nader ingegaan op de druk en temperatuur van het CO₂. Deze verandert wel door compressie. Tot slot wordt ingegaan op de hoeveelheid CO₂, die wordt aangeleverd en opgeslagen.
Samenstelling afgevangen gas
Naast de druk en de temperatuur van het CO\(_2\) is de kwaliteit belangrijk. Om chemische reacties in het reservoir te beperken, is het van belang dat het CO\(_2\) zo ‘zuiver’ mogelijk is en met zo min mogelijk verontreinigingen wordt opgeslagen. ‘Zuiver’ is een chemische term om aan te duiden dat een m\(^3\) gas bijna voor 100% uit dezelfde moleculen bestaat. Het CO\(_2\) dat in Pernis wordt afgevangen is erg zuiver. Het gas bestaat voor 99% uit CO\(_2\). De resterende 1% bestaat uit andere componenten zoals zuurstof, stikstof, waterstof, methaan etc.

Gasdruk en temperatuur bij verschillende projectonderdelen
Binnen het project zijn op twee plaatsen compressoren gepland om te zorgen dat het gas op de juiste druk en temperatuur komt. Ter plaatse van Plot 16 wordt het gas op de juiste druk gebracht voor transport door de pijpleiding. Ter plaatse van de injectielocaties zorgt de injectiecompressor (met koelerbanken) voor de juiste injectiedruk en temperatuur.

Compressor bij Plot 16
Voor het transport door de pijpleiding wordt uitgegaan van een zodanige druk, dat het CO\(_2\) nog in gasvormige toestand wordt getransporteerd. Dit betekent dat de druk bij omgevingstemperaturen maximaal 40 bar bedraagt in de transportleiding. Vanaf de raffinaderij wordt CO\(_2\) aangeleverd met atmosferische druk (1 bar). Voor het huidige gebruik zorgen de bestaande compressoren bij Plot 16, waarmee de druk toeneemt naar 12 tot 22 bar in drie compressietrappen. Voor dit project worden compressietrappen toegevoegd, zodat de druk voor transport door de transportleiding toeneemt naar 22 tot 40 bar. In de transportleiding zal de druk een paar bar afnemen en zal de temperatuur dalen tot grondtemperatuur (minimaal 5°C).

Compressor bij injectielocatie
De compressoren bij de injectielocaties zorgen voor toename van de druk tot boven de reservoirdruk, om ervoor te zorgen dat het CO\(_2\) het reservoir wordt ingeperst. De injectietemperatuur neemt toe tot boven 36°C, om zo faseveranderingen in de injectieput en het reservoir te voorkomen en om operationele stabiliteit te waarborgen. Gedurende het project worden de reservoirs geleidelijk opgevuld, wat zich uit in een steeds hogere injectie- en reservoirdruk. Vanaf 74 bar injectiedruk bevindt het CO\(_2\) zich in superkritische toestand. Er vindt echter geen faseverandering plaats. Uit veiligheidsoverwegingen wordt de druk in het reservoir niet tot boven de oorspronkelijke (of initiële) druk opgevoerd. Dit komt overeen met de omgevingsdruk op de diepte van het reservoir. Sinds de winning van gas, bestaat in het leeggeproduceerde gasreservoir feitelijk een relatief grote onderdruk ten opzichte van de omgeving. Een hogere druk zou kunnen leiden tot aantasting van het reservoir of het weglekken van CO\(_2\) uit het reservoir.
Tabel 5.1 geeft een overzicht van de verschillende drukcomponenten bij de locatie Barendrecht en de locatie Barendrecht–Ziedewij. De initiële druk komt overeen met de omgevingsdruk op de diepte van het reservoir. Doordat het reservoir van de locatie Barendrecht–Ziedewij (2.630 m) zich op grotere diepte bevindt dan het reservoir van de locatie Barendrecht (1.670 m), is de initiële druk bij de locatie Barendrecht–Ziedewij (314 bar) groter dan de initiële druk bij de locatie Barendrecht (174 bar). Voor beide reservoirs wordt een maximale einddruk van injectie van CO₂ aangehouden van 8 bar onder de initiële druk.

De begindruk in beide reservoirs bedraagt circa 40 bar (of iets lager). Geleidelijk aan neemt de druk in het reservoir toe en zal daarom ook de injectedruk moeten toenemen. Bij de maximale injectedruk aan het maaiveld wordt rekening gehouden met de toename van druk op grotere diepte. De compressoren dienen een iets grotere druk aan te kunnen om injectie tot deze maximale drukken te kunnen realiseren. Voor de locatie Barendrecht zal de maximale injectedruk 125 bar bedragen, terwijl voor Barendrecht–Ziedewij de maximale injectedruk 155 bar is.

Het fasediagram in 5.2.1 geeft de verschillende fases van puur CO₂ aan. Wanneer de hierboven besproken procesdrukken en temperaturen in deze figuur worden uitgezet, kan worden geconcludeerd dat er zich in het gehele systeem geen faseveranderingen plaatsvinden en dat het CO₂ zich gasvormig of superkritisch in het systeem bevindt (zie figuur 5.2). Deze condities zijn bewust geselecteerd omdat:

- Condensatie in de pijpleiding leidt tot operationele problemen zoals vloeistofslak vorming en de noodzaak tot afvang en verdamping voordat het de compressoren in kan stromen. Gascompressoren kunnen doorgaans niet goed tegen vloeistof.
- Condensatie in de injectieput en het veld kan leiden tot niet stabiele operatie van de injectieputten (drukfluctuaties), wat nadelig is voor de compressoren en overdrukken in het reservoir omdat vloeibare CO₂ met hoge dichtheid (in plaats van gas/superkritisch) het veld in wordt gedrukt.

De tabel toont de CO₂-druk in de transportleiding en de druk in de put en het reservoir voor de locaties Barendrecht en Barendrecht–Ziedewij.

<table>
<thead>
<tr>
<th>Druk (bar)</th>
<th>Transport</th>
<th>Begindruk reservoir</th>
<th>Maximale injectiedruk</th>
<th>Initiële druk in reservoir</th>
<th>Maximale einddruk in reservoir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barendrecht</td>
<td>35 - 40</td>
<td>30</td>
<td>125</td>
<td>174</td>
<td>166</td>
</tr>
<tr>
<td>Barendrecht–Ziedewij</td>
<td>35 - 40</td>
<td>40</td>
<td>155</td>
<td>314</td>
<td>306</td>
</tr>
</tbody>
</table>

7 Dit zijn onregelmatige golven van vloeistof, die kunnen worden gevormd door condensatie van het CO₂ naar vloeistof en dan door onregelmatige stroming in de pijpleiding (bijvoorbeeld bij opstoten) worden opgestuwd in een vloeistof slik. Zo’n slik kan niet de compressor in (alleen gas). Daarom moet ofwel deze slik worden afgevangen en later weer worden geïnjecteerd als gas of er zal aan de inlaat van de compressor een verwarmingselement moeten komen om de slik eerst te verdampen.
Alternatief drukregime onderzocht

Bij de voorgenomen activiteit wordt het CO$_2$ in gasvorm, bij maximale druk van 40 bar, door de transportleiding vervoerd. Dit vormt een belangrijk ontwarpuntsgemak. In het kader van het vooronderzoek en dit MER is een alternatief onderzocht waarbij CO$_2$ onder veel hogere druk wordt getransporteerd, in superkritische vorm. Dit wordt toegepast bij een aantal buitenlandse projecten. De afweging met betrekking tot de druk in de transportleiding heeft gevolgen voor de andere onderdelen van het project. Dit blijkt uit de volgende punten:

- De transportdruk heeft invloed op de al dan niet aanwezigheid van aanvullende compressoren bij de injectielocatie.
- De transportdruk heeft invloed op de noodzaak tot het aflaten van druk bij lage injectiedrukken en de noodzaak het dan weer op te warmen voor injectie.
- De transportdruk is bepalend voor de benodigde druktoename / compressie bij Plot 16.
- De maximale druk heeft invloed op de dikte en diameter van de pijpleiding.
- De transportdruk heeft invloed op de veiligheidscontouren van de leiding ten opzichte van de omgeving. Een hogere druk leidt in het algemeen tot grotere contouren.

 Capaciteit / hoeveelheden

De verschillende onderdelen van het project zijn op basis van druk aan elkaar gerelateerd. In het verlengde daarvan is de capaciteit, uitgedrukt in de hoeveelheid ton CO$_2$ per uur, onderling gerelateerd. Het is immers niet mogelijk meer CO$_2$ te injecteren dan er wordt geproduceerd. Omgekeerd dient de injectiecapaciteit voldoende te zijn om de aangeleverde CO$_2$ te injectoren. De pijpleiding geeft echter veel mogelijkheden om drukfluctuaties op te vangen. De lengte van 16,5 respectievelijk 20 km, met diameter van 355 mm, bepalen het volume in de pijpleiding. Door variatie in de druk kunnen tijdelijke verschillen tussen productie en injectie worden opgevangen.
Productievolume
De capaciteit van de raffinaderij bedraagt circa 120 ton per uur, continue. Het productieproces is relatief constant, gedurende 24 uur per dag en 7 dagen per week. Vanwege mogelijk tijdelijke uitval wordt rekening gehouden met een enigszins lagere hoeveelheid beschikbare CO₂, dan rekenkundig kan worden verwacht. Dit komt overeen met circa 3.000 ton per dag (3 kton) en 1 miljoen ton per jaar (1 Mton).

Compressor capaciteit bij Plot 16
De bestaande compressie capaciteit van OCAP tot circa 22 bar, bedraagt 105 ton per uur. Binnen het project zal de capaciteit worden uitgebreid, zodanig dat tot 105 ton per uur naar maximaal 40 bar kan worden gecomprimeerd. Vanuit de raffinaderij blijft zodoende 15 ton per uur over. Dit wordt separaat aan de frisdrankfabrikanten geleverd met een compressor.

Volume per jaar
Doordat vanaf Plot 16 eveneens CO₂ wordt geleverd aan tuinders en de (frisdrank) industrie, zal op jaarbasis een beperkt deel van de geproduceerde CO₂ beschikbaar zijn voor injectie. Van de geproduceerde 1 Mton per jaar is circa 530 kton gereserveerd voor de glastuinbouw en industrie, en 70 kton voor interne processen binnen de raffinaderij, zodat 400 kton CO₂ per jaar beschikbaar is voor opslag in leeggeproduceerde gasreservoirs (zie tabel 5.3).

Capaciteit pijpleiding
De pijpleiding is zodanig gedimensioneerd dat de maximale hoeveelheid van 105 ton per uur bij een druk van maximaal 40 bar, kan worden getransporteerd.

Compressie en injectie
Bij de injectielocatie komt maximaal 105 ton per uur aan. Per jaar is circa 400 Kton beschikbaar. Het gas wordt op de injectielocatie door de compressoren op een hogere druk gebracht. De putten en de eigenschappen van het reservoir (injectiviteit) zijn bepalend voor de hoeveelheid te injecteren CO₂ per uur bij een zekere injectiedruk. De structuur van het reservoirgesteente en de permeabiliteit bepalen in belangrijke mate de injectiviteit.

Voor de locatie Barendrecht geldt dat het niet mogelijk is per uur 105 ton CO₂ te injecteren. De maximale opslagcapaciteit wordt beperkt door de injectiviteit van het reservoir en de maximaal toelaatbare injectiedruk. Als gevolg hiervan wordt bij de locatie Barendrecht een compressor met een maximale capaciteit van 52,5 ton per uur opgesteld. Naar verwachting zal per jaar met deze capaciteit circa 280 ton CO₂ worden opgeslagen bij de locatie Barendrecht. Gedurende deze eerste jaren zal dus niet de gehele beschikbare hoeveelheid van 400 kton CO₂ worden opgeslagen. De resterende hoeveelheid CO₂, circa 120 Kton, zal alsnog bij Pernis worden geëmitteerd. Uiteindelijk wordt bij de locatie Barendrecht in 3 jaar circa 800 Kton (0,8 Mton) CO₂ opgeslagen. De beperkte injectiecapaciteit van Barendrecht heeft als bijkomend voordeel dat de injectieperiode kan worden verdeeld over 3 jaar, waarin er voldoende tijd is het Barendrecht-Ziedewij gasveld leeg te produceren.
Voor de locatie Barendrecht–Ziedewij geldt dat het wel mogelijk is om de maximale hoeveelheid CO\textsubscript{2} te injecteren. De 2-traps compressor afkomstig van Barendrecht zal worden aangepast tot een 1-traps compressor en op Barendrecht–Ziedewij worden geplaatst, zodat de maximale capaciteit van 105 ton per uur kan worden gehaald. Na een aantal jaren is de injectiedruk zodanig toegenomen dat er twee compressietrappen nodig zijn. Dan wordt een tweede compressor toegevoegd, zodat 105 ton per uur op de juiste druk kan worden gebracht. Per jaar kan hier gemiddeld 400 Kton worden opgeslagen. Dit leidt gedurende een periode van 25 jaar tot 9,5 Mton.

Gedurende een periode van 10 jaar zal ter plaatse van de locatie Barendrecht 0,8 Mton zijn opgeslagen en bij de locatie Barendrecht–Ziedewij circa 2,3 Mton. In totaal kan zodoende ongeveer 3 Mton worden opgeslagen in 10 jaar, waarmee wordt voldaan aan de minimumeis vanuit de overheidstender van 2 Mton in 10 jaar.

5.4 CO\textsubscript{2}-Bron

Shell raffinaderij Pernis

De ‘Shell Gasification Hydrogen Plant (SGHP)’ op de raffinaderij van Shell in Pernis is in 1997 geïnstalleerd. De basis van de SGHP is het zogenaamde ‘Shell Gasification Process’, waarin zeer zware koolwaterstofresiduen worden omgezet in synthesegas. Dit synthesegas (hoofdzakelijk koolmonoxide en waterstof) wordt niet alleen gebruikt om waterstof van te maken, maar wordt ook ingezet als stookgas voor de gasturbines van Shell Pernis’ energiecentrale. De waterstof wordt gebruikt in de ‘Hydrocracker’, een ander proces op de raffinaderij. Om tot een pure waterstofstroom te komen, wordt het synthesegas onttuweld, wordt de koolmonoxide omgezet in kooldioxide (CO\textsubscript{2}-shiftreactie) en wordt het CO\textsubscript{2} verwijderd bij zeer lage temperaturen in een absorptiekolom.

Hoeveelheid CO\textsubscript{2}

De SGHP in Pernis produceert jaarlijks in een bandbreedte van 900-1000 Kton CO\textsubscript{2} hetgeen ongeveer gelijk is aan 15% van de totale CO\textsubscript{2}-emissies van de raffinaderij van Shell Pernis. Plant stops vinden normaal één keer per vier jaar plaats. De SGHP productie in de jaren 2004, 2005, 2006 en 2007 waren respectievelijk 906 kton8 (plant stop jaar), 997 kton, 931 kton en 1.014 kton.

8 Het is gebruikelijk de hoeveelheid CO\textsubscript{2} uit te drukken in tonnen. Doordat CO\textsubscript{2} zowel in gasvorm als vloeibaar kan voorkomen, is een volume-eenheid minder gebruikelijk. Dit in tegenstelling tot bijvoorbeeld geproduceerd aardgas, wat uitgedrukt wordt in m3, aangezien dit als maat voor de waarde geldt.
Tabel 5.3. Overzicht van de CO₂-productie en -afvoer vanaf de raffinaderij in Pernis

<table>
<thead>
<tr>
<th>Productie</th>
<th>Ton CO₂ per uur</th>
<th>Kton CO₂ er jaar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intern procesbeheersing</td>
<td>120</td>
<td>1.000</td>
</tr>
<tr>
<td>Beschikbare CO₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linde frisdrank</td>
<td>1.5</td>
<td>15</td>
</tr>
<tr>
<td>OCAP</td>
<td>0 tot 105</td>
<td>380</td>
</tr>
<tr>
<td>CO₂-Injectie</td>
<td>0 tot 105</td>
<td>400</td>
</tr>
</tbody>
</table>

Chemisch zuiver CO₂

Het CO₂ heeft een puurheid van meer dan 99%, dat ook door de huidige afnemers van het CO₂ is gespecificeerd. Middels analyseapparatuur (samenstelling en watergehalte) en monsternamen wordt met grote regelmaat de samenstelling van het CO₂ door Shell Pernis gecontroleerd en geverifieerd op verschillende componenten.

Het CO₂ wordt daarom aangeduid als zeer zuiver. Dit is een chemische benaming voor een gas dat bijna volledig uit CO₂ moleculen bestaat. Het gas bestaat dan alleen uit CO₂ moleculen zonder bijmenging van de moleculen van andere gassen. Het CO₂ is droog, wat wil zeggen dat er nagenoeg geen water in het gas aanwezig is.

De CO₂-kwaliteit van het gas dat geïnjecteerd zal worden in Barendrecht en Barendrecht-Ziedewij, zal te allen tijde voldoen aan de specificatie die contractueel geldt tussen OCAP en de Shell Pernis raffinaderij. Shell Pernis is primair verantwoordelijk voor het afleveren op deze specificatie. Om de kwaliteit te garanderen zullen de volgende maatregelen worden genomen:

- Shell Pernis neemt 4 keer per jaar monsters om te confirmeren dat wordt voldaan aan de 8 belangrijkste gespecificeerde verontreinigingen in de CO₂-stroom. Het waterstofsulfidegehalte wordt continue gemeten met analyseapparatuur.
- OCAP meet on-line 7 kritische componenten in het afgeleverde CO₂, op basis waarvan besloten kan worden het CO₂ niet af te nemen voor transport en injectie.

5.5 Plot 16 - compressiestation

Huidige situatie

Vanuit Plot 16 wordt CO₂ geleverd in vier glastuinbouwgebieden: het Westland, de B-driehoek, Delfgauw en Wilgenlei. In onderstaande figuur is de CO₂-leiding van Plot 16 naar de tuinders weergegeven.
De benodigde faciliteiten bestaan uit een drietal compressoren, met capaciteit van 35 ton per compressor. Hiermee kan in totaal maximaal 105 ton CO\textsubscript{2} per uur worden gecomprimeerd. Bij de compressie van een gas ontstaat veel warmte. Tijdens het transport van het CO\textsubscript{2} door de transportleiding dient de temperatuur van het gas nabij de omgevingstemperatuur te blijven. De vrijkomende warmte bij de compressie van het CO\textsubscript{2} dient daarom afgevangen te worden. Voor de koeiing van de compressoren op Plot 16 wordt een gesloten koelsysteem gebruikt met glycol. De glycol wordt via een warmtewisselaar gekoeld met water uit de Oude Maas (aan de overkant van de weg ten opzichte van Plot 16). Naast de compressoren is een onbemande controle-unit gevestigd.

De levering aan de glastuinbouw in het Westland kent sterke seizoensschommelingen, doordat de vraag wordt bepaald door groeiperioden (dag-nacht en zomer-winter ritme van de gekweekte gewassen, zie figuur 5.4). Bij een maximale vraag kan de gehele CO\textsubscript{2}-productie worden hergebruikt. In andere perioden is de vraag gereduceerd tot vrijwel nul. Het gevolg hiervan is dat momenteel zonder CO\textsubscript{2}-opslag gedurende het jaar een aanzienlijke hoeveelheid CO\textsubscript{2} alsnog moet worden geëmitteerd.

Vanuit de glastuinbouw wordt gevraagd meer CO\textsubscript{2} te leveren. In perioden van grote vraag wordt alle beschikbare CO\textsubscript{2} echter al geleverd. Gedurende de overige perioden is CO\textsubscript{2} beschikbaar, maar is juist geen vraag vanuit de glastuinbouw.
Uitbreiding

Ter plaatse van Plot 16 is voldoende capaciteit beschikbaar, gezien de vrijwel maximale productie in de zomermaanden. Toch is uitbreiding van compressiecapaciteit nodig, aangezien transport van CO₂ naar de injectielocaties een hogere druk vereist dan in de huidige situatie gerealiseerd kan worden. Nadat CO₂ tot circa 22 bar is gecomprimeerd, is een additionele compressiestap nodig, zodat de druk tussen 25 en 40 bar kan worden opgevoerd. Voor de extra compressiestap zijn twee aanvullende booster centrifugaal-compressoren nodig van elk 52,5 ton/uur.

De hoogte van de compressoren zal met maximaal 5 meter gelijk aan de bestaande bebouwing zijn. Om de geluidsoverlast te beperken, zijn de compressoren eveneens opgesteld in een daarvoor bestemd gebouw. De omvang van de uitbreiding van Plot 16 bedraagt circa 750 m². De verharding zal bestaan uit stenen en gravel. Naast de compressoren worden koelinginstallaties en elektriciteitsvoorziening aangelegd.
Foto van Plot 16 met compressiestation. Onderstaand een schematische weergave van de toekomstige situatie met de uitbreiding linksboven ingetekend.
Processen

Compressie
De compressoren verhogen de druk van het CO₂ voor het transport naar Barendrecht van circa 22 bar tot ongeveer 40 bar. In de wintermaanden is het mogelijk dat de volledige 105 ton/uur CO₂ zal worden opgeslagen omdat de tuinders geen CO₂ afnemen. In de zomermaanden ligt deze verhouding omgekeerd. Ten opzichte van de huidige situatie zullen de bestaande compressoren vrijwel continu ingezet gaan worden, in plaats van periodiek. Hierdoor is het gebruik van deze compressoren efficiënter.

Droog CO₂
Het door de raffinaderij aangeleverde CO₂ bevat nagenoeg geen water, zodat het als droog CO₂ kan worden behandeld. Dit is van belang vanwege de geringe mate van corrosie die hierdoor in de installaties en leidingen kan worden verwacht.

Installaties
Op de compressoren zitten overstroombeveiligingen waarlangs in noodgevallen bij overdruk CO₂ afgelaten kan worden. Bij aflaten van druk zal op Plot 16 maximaal 375 Nm³ worden geëmitteerd. Het CO₂ wordt in dit soort (nood)gevallen via een bestaande ventpijp de lucht in gebracht.

In deze compressorruimte is een olie-opvangbak geplaatst onder de compressoren. De vloer in deze ruimte is vloeistofdicht, met afsluitbare putjes naar het riool waarin een olie-/vetafvang is geplaatst.

Voor de aanvullende koeling wordt gebruik gemaakt van een bestaand systeem voor de koeling van de huidige compressoren, met voldoende capaciteit om ook de nieuwe compressoren op aan te sluiten.

5.6 Transport van CO₂ per pijpleiding
Een nieuwe pijpleiding wordt aangelegd voor de transport van het CO₂ vanaf Plot 16 naar de beide opslaglocaties.

Pijpleiding
De operationele druk zal variëren tussen 25 en 40 bar. De veiligheidscriteria zijn gebaseerd op de ontwerddruk van 44 bar, zodat in praktijk relatief hogere veiligheidseisen worden toegepast. Het CO₂ zal zowel bij een werkdruk van 25 bar als bij 40 bar in gasvormige toestand zijn.

De pijpleiding transporteert droog CO₂, wat inhoudt dat er nagenoeg geen water aanwezig is in het CO₂. Dit is van belang, aangezien de kans op inwendige corrosie van de pijpleiding hierdoor gering is. Voor de pijpleiding wordt gebruik gemaakt van staal. De diameter van de pijpleiding bedraagt 355 mm (14 inch).
De pijpleiding wordt in agrarisch terrein op circa 1,2 meter onder het maaiveld aangelegd, wat betekent dat de bovenkant van de pijpleiding 1,2 meter onder het huidige maaiveld ligt. Dit is voor dit type pijpleidingen een standaard diepte. In openbare grond is de dekking standaard 1 meter.

Leidingtracé

Voor het tracé van de transportleiding is zoveel mogelijk aansluiting gezocht bij de bestaande leidingen. Het eerste deel van het leidingtracé verbindt Plot 16 met de locatie Barendrecht. Een gedeelte bevindt zich in een leidingstrook / buisleidingenstraat en een gedeelte ligt er buiten. Het tracé is hier gepland nabij een bestaande NAM-leiding. Het tweede deel van het leidingtracé verbindt de locatie Barendrecht met de locatie Barendrecht–Ziedewij. Het leidingtracé bestaat zodoende uit vier segmenten:

- Vanaf Plot 16 in de leidingstrook van de gemeente Rotterdam.
- Vanaf de kruising met de A4 in de Buisleidingenstraat.
- Nabij bestaande NAM-leidingen naar de locatie Barendrecht.
- Vanaf locatie Barendrecht naar de locatie Barendrecht–Ziedewij.

Leidingstrook (4,5 km)

Buisleidingenstraat (8,8 km)

Voor de kruising met de Butaanweg komt de leiding in grond van de Stichting Buisleidingenstraat te liggen. Hier wordt de Rijksweg A4 en vervolgens de Rijksweg A15 gekruist en is de grond in de buisleidingenstraat als landbouwgrond (grasland en bouwland) in gebruik. Het tracé volgt de Buisleidingenstraat tot de kruising met de Molenpolderse zeedijk.

Stichting Buisleidingenstraat Nederland (SBN)

De Stichting Buisleidingenstraat Nederland (SBN) beheert de buisleidingenstraat, waarin vanuit het Rotterdamse Havengebied meerdere gassen en vloeistoffen worden getransporteerd. Het tracé van de buisleidingenstraat loopt van Pernis (gemeente Rotterdam) in zuidelijke richting via Klundert naar Zeeland en verder naar Antwerpen in België. De Buisleidingenstraat is een 100 meter brede, met voorzieningen ingerichte, strook voor het leggen en beheren van leidingen. De buitenzijden van de leidingenstraat zijn al vanaf 1978 benut voor het leggen van diverse leidingen. De middenzone van de straat is nog beschikbaar voor het leggen van nieuwe leidingen. In het onderzoeksgebied bedraagt de breedte van de lege middenzone ongeveer 70 meter. SBN geeft aan waar en onder welke voorwaarden de nieuwe pijpleiding kan worden aangelegd.
De Buisleidingenstraat kruist zowel de A4 (bij het Beneluxplein), de A15 (verder in oostelijke richting) en de Groene Kruisweg.

- SBN zal voor de kruising met het Beneluxplein een nieuwe leidingtunnel aanleggen. Deze nieuwe leidingtunnel is tijdig beschikbaar, zodat de aanleg hiervan kan worden gezien als een autonome ontwikkeling.
- Voor de kruising met de A15 zijn bestaande tunnels beschikbaar, waarin de verschillende leidingen samen de rijksweg kruisen. De weg is hierbij gefundeerd op palen waardoor een soort van viaduct (ook wel overkluizing genoemd) ontstaat. De leidingen worden hier middels open ontgraving of een persing onderdoor gelegd.
- Voor de kruising met de Groene Kruisweg is een bestaande leidingtunnel beschikbaar.

Deels particulier en deels openbaar (3,1 km)
Na deze kruising loopt het tracé van de aan te leggen leiding door bouwland en kruist de weg en dijk Koedood, waarna de leiding in de berm van het ten zuiden van de Gaatkenplas gelegen fietspad zal worden gelegd. Na de kruising met de Kilweg sluit de leiding aan op de locatie Barendrecht.

Openbaar tussen locatie Barendrecht en Barendrecht-Ziedewij (3,35 km)
De leiding loopt verder in oostelijke richting, kruist de A29 en komt daarna in de berm van de Kilweg en de Leedeweg te liggen, waarna wordt aangesloten op de injectielocatie Barendrecht-Ziedewij.

Voor deel 1 van het project zal alleen de pijpleiding van Plot 16 naar de locatie Barendrecht worden gebruikt. Bij het tweede deel zal ook de pijpleiding vanaf locatie Barendrecht naar locatie Barendrecht-Ziedewij worden gebruikt.

De delen van de pijpleiding worden niet gelijktijdig aangelegd. Na afronding van de injectie op de locatie Barendrecht wordt de aftakking naar deze locatie afgesloten en de pijpleiding richting Barendrecht–Ziedewij in gebruik genomen.

In de volgende tabel zijn de kenmerkende deeltrajecten van het tracé weergegeven. Hieruit blijkt dat in totaal 13,3 km lengte in een gereserveerde leidingstraat ligt, terwijl 6,45 km wordt aangelegd buiten een bestaande leidingstraat.
Alternatieve ligging

De ligging van de pijpleiding ligt op hoofdlijnen vast. Echter bij de lokale invulling kunnen kleine wijzigingen nodig zijn, zodanig dat verstorend van de omgeving zo beperkt mogelijk blijft. Dit vormen de varianten ten opzichte van de voorgenomen ligging. De varianten worden mede onderzocht in dit MER.

Aanlegaspecten pijpleiding

De pijpleiding heeft een diameter van 355 mm, wat veelal wordt aangeduid als 14 inch. De bovenkant van de leiding bevindt zich op circa 1,00 m tot 1,20 m onder het maaiveld. Dat betekent dat voor de aanleg de grondwaterstand tot circa 2 meter onder het maaiveld moet worden verlaagd. Op sommige plaatsen langs het tracé is een bemaling nodig, op andere plaatsen is de ontwatering dieper dan 2 meter (zie hoofdstuk water in deelrapport 2).

Het bovenstaande tracé is grotendeels geprojecteerd in vergraven grond. In de leidingstrook van Gemeentewerken Rotterdam en van de Buisleidingenstraat wordt regelmatig gegraven. Daarnaast wordt een groot deel van de pijpleiding aangelegd parallel aan bestaande leidingen, ondermeer van de NAM. Het tracé in de middenberm van het Kilpad betreft, naar alle waarschijnlijkheid, niet vergraven grond.

Het leidingentraject kruist diverse waterlopen. Afhankelijk van het type watergang, worden verschillende uitvoeringsmethoden toegepast om de watergang te kunnen kruisen.

Veiligheid van de leiding

In de bestemmingsplannen rondom de buisleidingenstraat wordt, conform de VROM-circulaire uit 1984, rekening gehouden met een bebouwingsvrije zone van 55 meter en een toetsingszone van 175 meter (gebaseerd op het gegeven dat de leiding met de grootste veiligheidsafstanden op de referentiegrens ligt).
In de Buisleidingenstraat komen buisleidingen met verschillende media voor, maar deze liggen niet allen naast de CO$_2$-leiding. Dagmaat tussen de leidingen is in het vrije veld 1 meter en bij kunstwerken 0,5 meter. Het beleid van SBN is op basis van Adviesbureau Schrijvers [Bijlage 6, Adviesbureau Schrijvers, 2008]; de onderlinge afstand tussen de Leidingen in de buisleidingenstraat zijn zodanig bepaald dat domino-effecten als gevolg van overdruk niet mogelijk is.

Zodra de transportleiding operationeel is, vinden er minimaal één keer per week visuele inspecties plaats.

Kathodische bescherming

Staal kan corroseren (roesten). Om dit te voorkomen is de stalen leiding voorzien van een PE-coating. De coating is de primaire bescherming tegen corrosie. Daarnaast wordt gebruik gemaakt van Kathodische Bescherming (KB). KB vormt de secundaire bescherming. KB voorkomt dat er bij beschadigingen van de coating (stalen leiding is nog intact) corrosie kan optreden.

Een stalen leiding, voorzien van een coating, kan op twee manieren beschermd worden tegen corrosie.

- **Passief**, door het (bewust) aanbrengen van een galvanisch element.
- **Actief**, door het verlagen van het leidingpotentiaal (opdrukken van stroom) ten opzichte van het grondwater.

Bij passieve KB wordt gebruik gemaakt van een opofferingsanode (bijv. magnesium), welke onedeler is dan het leidingmateriaal (staal). De leiding moet elektrisch in verbinding staan met een groot stuk metaal (opofferingsanode). Hierdoor wordt de anode aangetast in plaats van de leiding. Om de levensduur van de opofferingsanode (beperkte levensduur) zo lang mogelijk te laten zijn, moet de beschermstroom zo klein mogelijk gehouden worden. Door een aansluitkabel tussen de anode en de leiding aan te brengen, welke in een meetpaal losgenomen kan worden, kan dit gemonitord worden.

Bij actieve KB wordt middels een gelijkrichter spanning op de buis gedrukt. Er ontstaat een stroomkring tussen de lokale anode en kathode op de leiding. Daar waar de stroom uittreedt, ontstaat de aantasting (corrosie). Als er een voldoende groot gericht tegengesteld potentiaalverschil is tussen het grondwater en de leiding, kan de aantasting voorkomen worden. Hiervoor wordt gebruik gemaakt van een stroombron en een hulpelektrode (inerte anode met zeer lange levensduur). De hoogte van het voltage moet afgestemd worden op het minimale vereiste potentiaalverschil tussen het grondwater en de leiding. De effectiviteit van de KB wordt gecontroleerd c.q beoordeeld door de het potentiaalverschil te meten.

Voor de (ondergrondse) CO$_2$ leiding zal in principe gebruik gemaakt worden van een actief KB systeem.
Risicobepaling aan de hand van kwantitatieve risicoanalyses (QRA)

In de in ontwikkeling zijnde AMvB Buisleidingen (waaronder mogelijk CO\textsubscript{2}-transport gaat vallen) zal waarschijnlijk uitgegaan worden van een veranderd veiligheidsbeleid. Als gevolg van nieuwe inzichten met betrekking tot effecten die kunnen optreden bij het falen van een leiding, kunnen de onderlinge afstanden mogelijk niet meer voldoen aan de nieuwe eisen van VROM. Dit is primair afhankelijk van diameter, druk en de naastliggende leiding. Om na te kunnen gaan in hoeverre voldaan kan worden aan de nieuwe richtlijn (waarbij \(10^{-6}\) risicocontour op de leiding ligt, zie hoofdstuk 11 rapport 2), wordt dit aspect op voorhand conservatief meegenomen in de QRA. In overleg met de Stichting Buisleidingenstraat wordt bepaald welke eventueel noodzakelijk faal- of effectbeperkende maatregelen toegepast kunnen worden.

5.7 Locatie Barendrecht (BRT)

Huidige situatie

De locatie Barendrecht is een gasproductielocatie gelegen aan de zuidkant van het Barendrecht Gasbehandelingsinstallatie (GBI). Op de locatie bevinden zich twee gaswinningputten. Er zal op het moment van de start van CO\textsubscript{2}-injectie geen gaswinning meer plaatsvinden omdat het veld is leeggeproduceerd. De putten zijn echter nog niet afgesloten.
Schema van de locatie Barendrecht (artist impression). Op de rechterfiguur zijn de GBI en de injectielocatie samen in beeld gebracht.
Aanpassing

De gasbehandelingsinstallatie blijft in gebruik om het gewonnen gas uit andere winlocaties in de omgeving te behandelen. Aanpassing vindt plaats op het zuidelijk gelegen puttenveld. Hier wordt gemiddeld 280 kton per jaar geïnjected. Door de beperkte injectiviteit van het reservoir Barendrecht kan niet alle beschikbare CO\(_2\) worden opgeslagen.

De aanpassingen bij de locatie Barendrecht bestaan uit:

- Het plaatsen van het bovengrondse deel van de binnenkomende pijpleiding.
- Het plaatsen van compressor en koeling.
- Het plaatsen van een injectieleiding faciliteit tussen de compressoren en de injectieput ('KISS injectieskid').
- Het aanpassen van de putten.

Deze compressorfaciliteiten komen deels te staan op het huidige puttenveld en de huidige parkeerplaats. De bomenrij tussen het puttenveld en de parkeerplaats zal worden verwijderd na het verkrijgen van een kapvergunning. Er wordt, afgezien van de strook van de bomenrij, geen additionele verharding toegepast.

Processen

Het CO\(_2\) wordt met een maximale druk van 40 bar aangevoerd. Op de locatie wordt het verder gecomprimeerd tot de benodigde injectiedruk en temperatuur. De CO\(_2\)-injectie op de locatie Barendrecht zal 3 jaar duren, waarbij de druk zal toenemen tot 130 bar. Het CO\(_2\) bevindt zich bij injectie initieel in de gasfase.

Monitoring vindt plaats via de monitoringsput. De druk in het reservoir en de samenstelling van het gas in het reservoir worden systematisch bijgehouden.

Wanneer de druk in het veld is opgelopen tot circa 95% van de initiële druk, zal het veld worden afgesloten. Na een periode van monitoring, waarbij een stabiele eind situatie optreedt, wordt de put afgedicht met een ‘pannenkoekplug’. Daarna worden de aanwezige installaties verwijderd. De monitoringsput blijft langer intact om het gedrag van het reservoir te kunnen blijven observeren.

Bij de bedrijfsvoering wordt rekening gehouden met regelmatig starten en stoppen in de zomerperiode, wanneer weinig CO\(_2\) wordt aangevoerd.
Installaties

Compressorstation

Op de locatie Barendrecht wordt één compressor neergezet om het CO$_2$ op injectiedruk te brengen, tot maximaal 166 bar (meer dan de maximaal benodigde 130 bar). Het compressorgebouw beslaat een oppervlakte van 11 bij 8 meter. De hoogte van het compressorgebouw is 6 meter. Voor de aanleg van de compressor is vergraving van het terrein en bemaling van het grondwater noodzakelijk. De maximale injectiecapaciteit van de compressor bedraagt 52,5 ton CO$_2$ per uur.

De compressoren worden aangedreven met elektromotoren. Voor de injectie bij de locatie Barendrecht is het benodigde vermogen van het compressorstation 1 MW voor een capaciteit van 53 ton per uur. Het compressorstation wordt direct uitgevoerd voor de volledige capaciteit voor de injectie bij locatie Barendrecht-Ziedewij van 105 ton/uur (2 MW vermogen).

In de compressorruimte is een olie-opvangbak geplaatst onder de compressoren. De vloer in deze ruimte is vloeistofdicht, met afsluitbare putjes naar het riool waarin een olie/vetafvang is geplaatst.

Wanneer in nood gevallen de overstroombeveiligingen in werking treden, zal CO$_2$ worden geëmitteerd. Bij het aflaten van druk zal maximaal 1.000 Nm3 worden geëmitteerd. Voor het emitteren van CO$_2$ wordt een te bouwen ventpijp van 8 meter hoog gebruikt. CO$_2$ kan mogelijk lekken via flensen (seals) tussen de installatieonderdelen. Via zogenaamde ‘stuffing boxes’ worden deze emissies beperkt.

Koeling

Voor de koeling van de compressoren wordt een gesloten koelsysteem met luchtkoeling gebruikt. Er zullen vier koelers bij de compressor geplaatst worden die een totale oppervlakte van 72 m2 zullen innemen. De koelers zijn 2,5 meter hoog. Als alternatief kan glycol worden gebruikt als koelmedium, waarbij het glycol met behulp van luchtkoelers wordt gekoeld.

Units

Op de locatie worden vier units geplaatst die gebruikt worden voor de elektriciteitsvoorziening, controlleruimte en besturingsinstallatie.

Work-over

Om de bestaande productieput om te bouwen tot CO$_2$-injectieput is een zogenaamde work-over noodzakelijk. De productieput bestaat uit een externe buis en een interne buis. De externe buis staat in direct contact met het gesteente. Met behulp van een work-over (onderhoudsmast) wordt de bestaande interne buis verwijderd en vervangen door een nieuwe CO$_2$-injectiebuis. De buitenste buis blijft intact. De onderhoudsmast is een dusdanig zware toren dat deze op een geheide fundering geplaatst moet worden. Voor de monitoringsput is geen work-over noodzakelijk.

De injectieput krijgt een roestvrij stalen binnenbuis (tubing). De monitoringsput niet, maar daar kan worden gemeten hoe snel eventuele corrosie optreedt.
5.8 Locatie Barendrecht-Ziedewij (BRTZ)

Bestaande situatie
Aanpassing

De aanpassingen bij de locatie Barendrecht–Ziedewij bestaan uit:

- Het plaatsen van het bovengrondse deel van de binnenkomende pijpleiding.
- Het plaatsen van compressoren en koeling.
- Het plaatsen van een injectieleiding faciliteit tussen de compressoren en de injectieput ('KISS injectieskid').
- Het aanpassen van de putten.

Op de locatie zal geen uitbreiding van de verharding komen. De faciliteiten worden op het terrein gezet dat in de huidige situatie met asfalt is bedekt.

Processen

CO₂ wordt eveneens aangevoerd met een transportdruk van 40 bar. Door de diepe ligging van het reservoir, moet CO₂ met een hogere injectiedruk geïnjecteerd worden. De bovengrondse injectiedruk van het Barendrecht-Ziedewijveld heeft een beginwaarde van 40 bar en neemt in 25 jaar toe tot ongeveer 160 bar.

Wanneer de druk in het veld de initiële druk heeft bereikt, wordt de locatie verlaten. De aanwezige locaties worden verwijderd en de injectieput wordt afgesloten met een pannenkoekplug. Monitoring vindt plaats om het gedrag van het reservoir te observeren.

Installaties

De compressor van de locatie Barendrecht wordt verplaatst naar de locatie Barendrecht-Ziedewij nadat de CO₂-injectie te Barendrecht is afgerond. De compressor wordt aangepast, van 52,5 ton per uur tot 166 bar (zoals toegepast op de locatie Barendrecht) naar 110 ton per uur tot 80 bar. Na 12 jaar is de druk in het reservoir toegenomen tot de waarde waarbij een extra compressor noodzakelijk is. De bestaande compressor wordt weer teruggebouwd tot de oorspronkelijke 52,5 ton per uur en maximale druk van 166 bar, terwijl er een tweede soortgelijke compressor wordt toegevoegd. De injectiecapaciteit van beide compressoren samen bedraagt dan 105 ton per uur en de maximale injectiedruk 166 bar.

Bij de compressor wordt bijbehorende koeling geplaatst. De units voor elektriciteit, monitoring en controle worden met twee uitgebreid. In totaal bevinden zich dan 6 units op de locatie.

Wanneer in noodgevallen de overstroombeveiligingen in werking treden, zal CO₂ worden geëmitteerd. Bij het afsluiten van druk zal een hoeveelheid CO₂ van circa 500 Nm³ na 14 jaar (1 compressor) en 2 keer 1000 Nm³ na 30 jaar (twee compressoren) geëmitteerd worden. Voor het emitteren van CO₂ wordt een te bouwen ventpijp van 8 meter hoogte gebruikt.
CO₂ kan mogelijk lekken via seals tussen de installatieonderdelen. Door zogenaamde ‘stuffing boxes’ worden deze emissies beperkt.

Voor de koeling van de compressoren wordt een gesloten koelsysteem met luchtkoeling gebruikt.

De bestaande productieputten kunnen zonder work-over in gebruik worden genomen als injectieput. Op de locatie zullen een injectieput en een monitoringsput komen. De twee overgebleven putten zullen voorafgaand aan de injectie worden afgesloten.

5.9 Reservoirs en putten

In de tekst worden de termen ‘veld’ en ‘reservoir’ gebruikt. Beide termen hebben betrekking op een ondergrondse laag, waarin ondermeer gas, water of CO₂ kan worden opgeslagen.

5.9.1. Barendrecht

Reservoir

Het Barendrechtveld maakt deel uit van de Rijswijk concessie. Het veld bestaat uit 3 reservoirs:

- Holland Greensand (1.472 meter diep)
- De Lier zandsteen (1.670 meter diep)
- IJsselmonde Zandsteen equivalent (1.900 meter diep).

Het CO₂ wordt in de ‘De Lier’ formatie geïnjecteerd. De Lier zandsteenformatie is gesitueerd op 1.670 meter diepte met een initiële reservoirdruk van 174 bar en een reservoirtemperatuur van 70 °C. Het reservoir bestond oorspronkelijk uit een 7 meter dikke olielaag en een 52 meter gaskolom. Het winnen van de aanwezige olie was economisch niet rendabel. In 1999 is begonnen met het in productie nemen van het Barendrechtveld. Momenteel is de druk in het veld gezakt tot 33 bar. Het is de bedoeling dat het veld tot 8 bar onder de initiële druk zal worden opgevuld. Er zijn drie putten in het reservoir aanwezig. De afdichtende laag boven het reservoir bestaat uit een 90 meter dikke ‘Lower Holland Marl’ laag.

Winputten

Injectieputten
Voor CO$_2$-injectie kan gebruik worden gemaakt van de bestaande put BRT-2B. Deze dient aangepast te worden, maar is geschikt voor het injecteren van CO$_2$ in het De Lier reservoir. Via deze put wordt per jaar gemiddeld 0,3 miljoen ton CO$_2$ geïnjecteerd. BRT-1 kan worden gebruikt voor monitoring, aangezien deze put eveneens tot het De Lier Laagpakket toegang heeft.

5.9.2. Barendrecht-Ziedewij

Reservoir
Het Barendrecht-Ziedewij veld is gesitueerd in het zuidoostelijke deel van de Rijswijk concessie. Het reservoir ligt op een diepte van 2.630 meter. Het gas wordt gevonden in poreuze, doorlaatbare blokken gesteente. De aanvankelijke druk in het reservoir was 314 bar. Het reservoir heeft geproduceerd sinds 1997 waardoor de huidige druk gezakt is tot 30 bar. Het is hier evenals bij Barendrecht de bedoeling dat het veld tot 8 bar onder de initiële druk wordt opgevuld. De temperatuur in het reservoir is 107°C. De afdichtende laag boven het reservoir bedraagt circa 430 meter, waarbij een 107 meter dikke ‘upper keuper’ laag.

Putten

Injectieputten
BRTZ-1 bevindt zich in het grootste blok, waar zoals gezegd 90% van het veldvolume zich bevindt. Deze put zal worden gebruikt voor de CO$_2$-injectie. Gedurende de eerste periode van naar verwachting circa 9 maanden zal vanuit put BRTZ-3 nog gaswinning plaatsvinden. Daarna zal BRTZ-3 samen met BRTZ-4A worden ingesteld als monitoringsputten tijdens de CO$_2$-injectie.

| Tabel 5.2 Overzicht dieptelijging van de reservoir en afdekkende laag |
|---|---|---|---|
| Diepte | Bovenkant afdekkende laag | Onderkant afdekkende laag / bovenkant reservoir | Onderkant reservoir |
| Barendrecht | 1.580 | 1.670 | 1.730 |
| Barendrecht-Ziedewij | 2.200 | 2.630 | 2.860 |
5.10 Eindsituatie

De eindsituatie van het project wordt naar verwachting bereikt na 25 tot 30 jaar. Na de opslag van het CO$_2$ vindt nog een periode van monitoring plaats, zodat kan worden vastgesteld wanneer een stabiele eindsituatie is bereikt. Zodra dit het geval is, kunnen de putten worden afgesloten (geabandonneerd) en kunnen de locaties weer in de oorspronkelijke situatie worden teruggebracht. De locatie wordt weer aan de eigenaar overgedragen, terwijl de overheid verantwoordelijk is voor de opgeslagen CO$_2$. Het is de bedoeling dat verder geen gebruiksbeperkingen zullen rusten op het grondgebied van de locatie en boven de opgevulde reservoirs.

5.10.1. Stabiele eindsituatie

De situatie kan als een stabiele eindsituatie worden benoemd, zodra de uitvoerder en de overheid ervan overtuigd zijn dat het CO$_2$ veilig is opgeslagen in de diepe ondergrond en dat verdere monitoring of andere toetsende activiteiten niet meer zinvol zijn. Dit zal worden bepaald met behulp van een monitoringsprogramma. De meetwaarden kunnen onderbouwen, wanneer de stabiele eindsituatie is bereikt. Het opgeslagen CO$_2$ in de diepe ondergrond kan dan nog wel verandering ondergaan, zoals het geleidelijk aan mineraliseren. Met deze veranderingen is bij de modellering al rekening gehouden.

5.10.2. Nazorg (gebruik en monitoring)

Het principiële uitgangspunt van de CO$_2$-opslag is, dat de opslag wordt beëindigd wanneer het reservoir gevuld is, de put(ten) afgesloten zijn, de bovengrondse faciliteiten zijn verwijderd en de monitoring van het reservoir beëindigd is omdat deze laatste heeft aangetoond dat de opslag veilig is; een ‘stabiele eindsituatie’ is ontstaan. Op dat moment zal de zorg voor het reservoir overgaan van de particuliere initiatiefnemer in handen van de overheid.

De initiatiefnemer is geen voorstander van een vaste periode – anders dan de monitoring van de genoemde pannenkoekenplug en het vaststellen van de ‘stabiele eindsituatie’ – tussen sluiting en overdracht (niet te verwarren met een vaste periode voor aansprakelijkheid). Er is een parallel te vinden in de EU-richtlijn voor stortplaatsen waar afval van mijnen wordt gestort (2006/21/EG), met name artikel 12 (lid 4) waarin de sluiting en overdracht afhankt van de resterende risicobeoordeling en acceptatie door de overheid. Eventuele nazorg na sluiting is momenteel niet voorzien, maar kan voortvloeien uit de monitoring gedurende de actieve injectiefase en/of de instemming op het Sluitingsplan.

De overheid (of gezamenlijke overheden) heeft een aantal middelen voorhanden om de veiligheid en integriteit van het reservoir na sluiting te blijven garanderen en eventuele monitoring en/of gebruiksbeperkingen te handhaven. Onderstaand zijn deze van ‘diep-naar-ondiep’ weergegeven, deels gerelateerd aan de begrenzingen van wetgeving en bevoegdheden.
Mijnbouwkundig toezicht

Een gevuld CO\textsubscript{2}-reservoir is momenteel niet geschikt voor enig ander gebruik. Via de vergunningensystematiek die de Mijnbouwwet kent wordt gewaakt over de integriteit van het CO\textsubscript{2}-reservoir omdat eventueel conflicterend gebruik van de ondergrond in de buurt van het CO\textsubscript{2}-reservoir (bijvoorbeeld andere opslagen, gaswinning of gebruik van geothermie) instemming behoeft van het Ministerie van Economische Zaken en individuele boorprogramma’s moeten worden voorgelegd aan SodM.

Vergunningstelsel grondwaterwet

Het gebruik van (diepere) grondwaterlichamen voor bijvoorbeeld drinkwaterwinning, Koude-Warmte-Opslag (KWO) of andere wateronttrekkingen of -infiltraties wordt gereguleerd via de Grondwaterwet. De provincie bewaakt deze gebruiksvormen en eventuele conflicten via een vergunningenstelsel.

Ruimtelijke plannen

Via onder meer het bestemmingsplan en de daaraan gekoppelde planvoorschriften kan de voormalige injectielocatie, maar wellicht tevens de omliggende gronden of diepere aardlagen worden voorzien van waarborgen omtrent toekomstig gebruik. Op grotere schaal kan het gebruik van gebieden worden aangewezen dan wel uitgesloten via de provinciale plannen.

Kadastrale registratie

Via de kadastrale registratie is het tenslotte voor een ieder kenbaar dat zich onder het perceel een gesloten put bevindt. Tevens kan daarin zijn aangegeven of er een eventuele (tijdelijke) monitoringsplicht rust op de betreffende percelen.

5.11 Bijzondere omstandigheden

In het MER worden de mogelijke milieueffecten beschreven tijdens de aanlegfase, de injectiefase en na afronding. Daarbij wordt onderscheid gemaakt tussen de reguliere effecten en de effecten die kunnen optreden bij bijzondere of onverwachte omstandigheden. Bij bijzondere omstandigheden kan worden gedacht aan:

- Een situatie waarbij een ongeluk is gebeurd of een calamiteit.
- Het periodieke onderhoud en een situatie waarbij injectie van CO\textsubscript{2} tijdelijk wordt stopgezet.

In paragraaf 5.11.1 tot en met 5.11.3 worden mogelijke calamiteiten beschreven en de bijbehorende beheersmaatregelen. Daarna wordt in paragraaf 5.11.4 ingegaan op het reguliere onderhoud. In paragraaf 5.11.5 komen eventuele domino-effecten in de buisleidingenstraat expliciet aan bod.
5.11.1. Calamiteitenscenario’s

Bij projecten kunnen zich onverwachte omstandigheden voor doen. Over het algemeen worden alle mogelijke preventieve maatregelen getroffen om te voorkomen dat zich problemen voordoen, maar een incident is nooit honderd procent uit te sluiten. Binnen het kader van dit project is gekeken naar datgene wat, als het mis gaat, het meeste invloed kan hebben op het milieu in brede zin. De calamiteitenscenario’s beschrijven wat er kan gebeuren indien ondanks de voorzorgsmaatregelen een ongeluk toch optreedt.

Lekkage van CO$_2$ wordt gezien als de meest ongunstige gebeurtenis, die zou kunnen optreden. Hierbij kan onderscheid worden gemaakt tussen een relatief grote lekkage, waarbij in korte tijd veel CO$_2$ vrijkomt, en een kleine lekkage, waarbij geringe hoeveelheden vrij komen. Lekkages vanuit de diepe ondergrond, tijdens de injectiefase of wellicht op de langere termijn, komen uitgebreid aan bod in het deelrapport 3 van het MER, over de ondergrondse opslag.

De scenario’s, de daaropvolgende acties en de noodorganisatie worden in meer detail beschreven in de calamiteitenplannen. Deze plannen worden in overleg met de lokale en regionale veiligheidsdiensten opgesteld. In aanvulling hierop evalueert het Veiligheids- en Gezondheidsdocument de gevaren voor veiligheid, gezond en milieu. Beheersing van de gevaren dienen aantoonbaar tot een zo laag mogelijke risico’s te leiden. Dit document heeft onder andere tot doel de medewerkers van in de gelegenheid te stellen zich op de hoogte te stellen van de gevaren en wijze van risicobeheersing en het bevoegd gezag in staat te stellen te verifiëren dat aan de wettelijke eisen is voldaan.

Mogelijke gevolgen vrijkomen CO$_2$

CO$_2$ kan bij hoge concentraties een risico vormen voor de gezondheid, zoals beschreven in hoofdstuk 5.2.2. Bij concentraties van 5% tot 10% kan het CO$_2$ de zuurstof tijdelijk verdrukken. Zeer langdurige verhoogde concentraties kunnen ook effect hebben op de vegetatie. Kleine verhogingen van de CO$_2$-concentratie leiden tot snellere groei, zeer grote verhogingen tot vertraagde groei en verdorring.

Wolkvorming

CO$_2$ is niet brandbaar of explosief, maar wel zwaarder dan lucht. Het meest bedreigend is de situatie waarbij een CO$_2$-wolk zou kunnen ontstaan, die zich dicht bij de grond verspreidt. Dit kan op den duur het gevaar van verstikking opleveren. Aangezien het CO$_2$ onder normale omstandigheden zal mengen met de lucht, dienen zich bijzondere omstandigheden voor te doen. Deze omstandigheden zijn een grote hoeveelheid CO$_2$ die in korte tijd beschikbaar komt, met lage uitstroomsnelheid, bij windstil weer, onopgemerkt, en uitkomend in een beperkt en laaggelegen gebied (een dal of gebied omgeven door dijken). Vanwege de relatief hoge drukken zal voor de meeste scenario’s de hoge uitstroomsnelheid voor een goede menging met de buitenlucht zorgen. Uitzonderingen hierop worden gevormd door een kleine lekkage van de pijpleiding in een van de leidingtunnels en kleine lekkage bij de put. In het laatste geval is berekend dat er ongeveer maximale hoeveelheid CO$_2$ van 0,5 kg per uur (4,5 ton per jaar) langs de put kan lekken. Dit is vergelijkbaar met de jaarlijkse CO$_2$-uitstoot van een middenklasse auto. De bodem heeft een afremmende werking bij een lekkage in een ondergrondse pijpleiding. Bij het bepalen van calamiteiten en mogelijke gevolgen worden bovenstaande karakteristieken in beeld gehouden.
Mogelijke oorzaken
De volgende belangrijke factoren kunnen de oorzaak zijn van een calamiteit:

- Overdrukken in de installaties.
- Onopgemerkte constructiedefecten.
- Corrosie, degradatie van onderdelen (vrij water in combinatie met CO$_2$).
- Mechanische belasting van leidingen (bijvoorbeeld als gevolg van grondverschuivingen trillingen veroorzaakt door de compressor).
- (Graaf) werkzaamheden rondom de pijpleiding.
- Menselijke fouten bij bijvoorbeeld onderhoud- en of inspectiewerkzaamheden.

5.11.2. Grote, snelle lekkage
Indien bij de pijpleiding of de compressor een lek ontstaat, kan er CO$_2$ ontsnappen. Dit leidt tot uitstoot van CO$_2$ waarbij de druk vanaf de pijpleidingdruk (tussen 25 en 40 bar) of compressordruk (tot boven 100 bar) afneemt naar bijna atmosferische druk. Door snelle uitzetting zal het gas afkoelen en ontstaat waterdamp in de atmosfeer. Bij hogere drukken, van 80 bar of meer, zal CO$_2$ in vaste vorm als sneeuw vrijkomen. Dit verdampft vervolgens in de atmosfeer, waardoor verhoogde CO$_2$-concentraties ontstaan. De lekkage is hierbij goed zichtbaar. Door de hoge uitstroomsnelheden is de lekkage ook zeer goed hoorbaar. Een grote en snelle lekkage kan worden gemeten, maar is ook zichtbaar en hoorbaar, waardoor tijdig actie kan worden ondernomen.

In het project worden voor een grote lekkage rekening gehouden met de volgende calamiteiten-scenario’s:

- Een gat in de ondergrondse pijpleiding.
- Een gat in de pijpleiding in een leidingtunnel.
- Een complete breuk van de pijpleiding.
- Een breuk bij de injectieleiding.
- Een blow out bij een van de putten.

Hieronder volgt een korte beschrijving van de mogelijk gevolgen en calamiteitenplannen voor deze scenario’s. Beheersmaatregelen die genomen zijn om het risico van deze scenario’s te minimaliseren worden in hoofdstuk 5.11.4 besproken.
Gat in het ondergrondse deel van de pijpleiding

Ontsnapping van CO\(_2\) uit een gat van 10 tot 20 mm zal goed hoorbaar zijn door de hoge uitstroomsnelheden. Condensatie van waterdamp rondom de lekkage zal ervoor zorgen dat de lekkage ook goed zichtbaar is. Buiten dit zichtbare CO\(_2\) is geen concentratie van CO\(_2\) in de lucht die gezondheidsschade voor mensen kan betekenen. Een ondergronds lek kan door de aanwezigheid van omringende aarde een lagere uitstroomsnelheid hebben dan een ongehinderd lek. Op basis van de uitgangspunten zoals gedefinieerd in het bijlagenrapport externe veiligheid is geconcludeerd dat de verticale snelheid nog steeds voldoende is om zeker te stellen dat de effecten beperkt blijven tot een zone van 4 meter.

Zodra het lek bemerkt is zal de pijpleiding ingesloten worden, de druk afgelaten, en de pijpleiding gerepareerd worden. Aansluitend op de reparatie wordt onderzoek naar de oorzaak ingesteld.

Gat in de pijpleiding in de leidingtunnels

Op twee plaatsen in het tracé loopt de pijpleiding door een speciaal voor pijpleidingen aangelegde leidingtunnel. Hier is de kans nihil dat er een volledige pijpleidingbreuk plaatsvindt, omdat de tunnel goed beschermd is tegen externe beschadiging, zoals graafwerkzaamheden. Een klein gat is niet geheel uit te sluiten. In dat geval zal een alarm afgaan, omdat er in deze leidingtunnels CO\(_2\)-detectoren aanwezig zijn. De pijpleiding zal dan worden ingesloten en afgeblazen. Calamiteitsplannen zullen opgesteld worden om zeker te stellen dat de juiste acties en voorzorgsmaatregelen worden genomen.

Complete breuk van de pijpleiding

De transportleiding ligt op een diepte van 1 tot 1,2 meter. Indien een externe partij, bijvoorbeeld met een landbouwwerktuig de pijpleiding kapot trekt, kan een volledig pijpleidingbreuk optreden. Dit leidt tot uitstoot van CO\(_2\) waarbij de druk vanaf de pijpleidingdruk (tussen 25 en 40 bar) afneemt naar bijna atmosferische druk. Door snelle uitzetting zal het gas afkoelen en door de hoge snelheid zal de grond boven de pijpleiding wordt weggeblazen. De lekkage is dan goed zichtbaar en hoorbaar. Het vrijkomende CO\(_2\) zal uiteindelijk omhoog gaan en vermengen in de hogere luchtlagen.

Door de lekkage zal de druk aan de perszijde van de compressoren op Plot 16 dalen tot beneden een kritische waarde. Dit zorgt er voor dat het beveiligingssysteem van de compressoren de machines stopt en de automatische kleppen sluit. Hierdoor komt geen nieuw CO\(_2\) meer in de leiding.

Door de hoge snelheid waarmee het CO\(_2\) verticaal omhoog wordt geblazen, zijn de effecten op grondniveau beperkt. Afhankelijk van de weersomstandigheden ten tijde van de lekkage en de specifieke plek langs het pijpleidingtracé, kan het mogelijk zijn dat een klein gebied rondom het lek tijdelijk wordt afgesloten.
Risicoberekeningen geven aan dat dit voor de meeste weersomstandigheden niet nodig zal zijn. Bij windstil weer geldt een noodzakelijk afgietting hooguit zeer tijdelijk voor zeer kleine gebieden. De pijpleiding is bij een breuk binnen 30 minuten geheel leeggestroomd. Na deze periode is geen verder risico meer aanwezig. In totaal zal ongeveer 130 ton CO\textsubscript{2} vrijkomen. Dit komt overeen met de inhoud van de 14 inch-leiding bij 40 bar.

Breuk van de injectieleiding

Indien in de injectieleiding een breuk ontstaat, kan CO\textsubscript{2} ook in horizontale richting vrij komen. Een horizontale uitstroom kan voor grotere effecten zorgen. Bij het optreden van dit scenario zal een terugslagklep terugstroming vanaf de put voorkomen, zodat geen CO\textsubscript{2} uit het reservoir in de atmosfeer terecht komt. De lagedrukbeveiliging klep op de put en een klep in persleiding van de compressor zullen sluiten. Bij dit scenario zal circa 600 kg CO\textsubscript{2} vrijkomen. De effectafstand bedraagt circa 75 meter vanaf de plaats van de breuk en zal maximaal enkele tientallen meters buiten het hek komen. Een volledige breuk in het bovengrondse deel van de inkomende transportleiding resulteert in een vergelijkbare effectafstand.

Blow out bij één van de injectieputten

Bij een blow out komt het CO\textsubscript{2} vanuit de put met veel snelheid omhoog. Dit komt met name voor wanneer geboord wordt, maar kan ook gebeuren in bestaande putten door bijvoorbeeld menselijke fouten bij werkzaamheden aan de putten. Normaliter zullen dan de afsluiters onderin en bovenaan de put automatisch dichtgaan. Echter, als deze ook niet werken, kan een blow-out ontstaan. Het gevolg is dat er een grote hoeveelheid CO\textsubscript{2} in de lucht komt. Er zijn standaard procedures in de olie- en gastproductie die gevolgd zullen worden om de put weer onder controle te krijgen.

Indien het niet lukt om de put op korte termijn af te sluiten (slechtste geval) kan het nodig zijn om een hulpput te boren, om zo de put stil te leggen. Dit kan maximaal 1 maand duren. De hoeveelheid CO\textsubscript{2}-uitstoot is dan afhankelijk van het veld en van de druk in het veld. Voor Barendrecht geldt dat bij een blow out 2 maanden na de start van de injectie circa 6 Kton CO\textsubscript{2} zal vrijkomen, terwijl tegen het einde van de injectieperiode dit 60 Kton CO\textsubscript{2} bedraagt. Voor Barendrecht-Ziedewij is dit respectievelijk 25 en 380 Kton CO\textsubscript{2}-uitstoot.

Van uit een blow out komt het CO\textsubscript{2} recht omhoog in de atmosfeer. Daarbij treedt eveneens een sterke drukdaling op waardoor sneeuwvorming optreedt. Voor de Barendrecht putten liggen de effecten van dit scenario op de locatie, de Barendrecht-Ziedewij putten hebben echter een hogere ingesloten putdruk en grotere putdiameter, waardoor de effecten tot circa 50 meter buiten het hek van de locatie komen.

Kleine snelle lekkages

Op de locatie zijn verschillende installatiedelen aanwezig die aanleiding kunnen geven tot kleine lekkages, zoals bijvoorbeeld flenslekkages. Statistisch gezien komen deze lekkages vaker voor dan de grotere lekkages. De effecten van deze scenario’s beperken zich tot de inrichting zelf.
5.11.3. Langzame, kleine lekkage

Transportleiding

Een heel klein gaatje in de pijpleiding kan leiden tot een veel minder zichtbare en alleen zeer lokaal hoorbare lekkage. Bij een heel klein lek waar geen CO₂-detectie is, komt het CO₂ langs de pijpleiding in de bodem en zal geleidelijk de bodem nabij de leiding aantasten. Dit zal eerst leiden tot verbeterde plantengroei, maar op den duur tot verdorring. Het CO₂ kan dan ook in de lucht komen, waar het normaal gesproken zal mengen. Indien het CO₂ vanuit de bodem in een afgesloten ruimte komt, kan geleidelijk aan een hogere concentratie ontstaan. Het is dan ook van belang dat de leiding niet onder of vlakbij afgesloten ruimten ligt. Deze lekken zullen niet leiden tot effecten buiten de zakelijk rechtstrook. De lekken worden opgemerkt doordat tijdens de visuele inspectie een verandering in de vegetatie wordt waargenomen of dat de lekkage condensatie van de omringende lucht veroorzaakt. De visuele inspectie wordt minimaal eens per week uitgevoerd.

Dit soort lekkages kunnen hoogstens gedurende 6 of 7 dagen optreden, omdat het gehele leidingtracé (net als de buisleidingenstraat zelf) eenmaal per week visueel geïnspecteerd wordt.

Compressor- en puttenlocaties

Lekkage uit diepe ondergrond

Lekkages langs de buitenkant van de put zullen opgemerkt worden door regelmatige metingen van de gasstroom (belletjes) langs de putwand. In het onwaarschijnlijke geval dat er een lekkagepad tot het oppervlak komt, zal de lekkage ook gemeten worden in de jaarlijkse metingen van CO₂ in de bodem rond de putten. De hoeveelheden (in het ergste geval) zijn zoals gezegd zeer beperkt; maximaal ongeveer 4,5 ton CO₂ per jaar (vergelijkbaar met de uitstoot van een middenklasse auto).

De normale technieken voor het herstel van putintegriteit zullen gebruikt worden om de putintegriteit te herstellen. Ook kan ervoor gekozen worden om een put vroegtijdig te verlaten en zo het lekpad met behulp van de pannenkoekenplug af te sluiten. In beide velden zijn in principe nog meerdere putten beschikbaar en is maar 1 put nodig voor injectie.
5.11.4. Beheersmaatregelen

Bovenstaande risico’s zullen worden gemitigeerd door het nemen van ontwerpmaatregelen, operationele maatregelen en procedures, en het samenstellen van veiligheidsdocumentatie en vergunningen. Voor het juiste perspectief is het van belang te melden dat de kans op een volledige leidingbreuk of blow out per put in de orde van grootte is van eens per tienduizend jaar.

Hieronder zijn de belangrijkste beheersmaatregelen beschreven.

Beheersmaatregelen tijdens ontwerp, constructie en operatie

- Met een systeem van gestructureerde brainstormtechnieken in multidisciplinair verband zijn faalscenario’s geëvalueerd en is waar nodig het ontwerp aangepast.
- Competentie-eisen voor operators, ingenieurs en onderhouds- en inspectiepersoneel.
- De kans op constructiedefecten wordt geminimaliseerd door het toepassen van lasprocedures, afpersen en ‘non destructive testing’ tijdens constructie.
- Het mechanisch ontwerp van zowel installaties als pijpleiding voldoet minimaal aan de relevante standaarden, zoals bijvoorbeeld NEN-3650 voor pijpleidingen en de PED regels voor toestellen onder druk.
- De kans op aangraven wordt geminimaliseerd door afspraken met de grondeigenaren (zakelijk recht) en het systeem van KLIC melding, welke in de nabije toekomst vervangen wordt door de grondroerdersregeling.

Installaties

- Het CO₂ van Shell Pernis is zeer zuiver (bijna geen andere stoffen) en zeer droog, Door continue monitoring van deze kwaliteit zijn risico’s van materiaalaantasting (zoals b.v. staalcorrosie) nagenoeg uitgesloten. Waar nodig worden speciaal voor CO₂-geschikte materialen geselecteerd (b.v. afdichtingsringen in afsluiters).
- De gekozen drukken en temperaturen zijn zodanig dat er geen faseovergangen zullen plaatsvinden in de installaties. Dit vermindert de risico’s t.g.v. multi-fase operaties.
- Verder vindt de normale procesbeheersing plaats (op druk, temperatuur en debiet).
- De installatie wordt automatisch ingesloten, indien bepaalde kritieke waarden worden overschreven. Afhankelijk van de situatie kan de installatie dan ook automatisch worden afgeblazen (van druk afgehaald). Zowel op Pernis (Plot 16) als op de Barendrechtlokaties zijn lokale afblaaspijpen die hiervoor geschikt zijn.

Pijpleiding

- De pijpleiding zal alleen gasvormig CO₂ van maximaal 40 bar transporteren. Dit betekent:
 - Geen fase-vergangen (en dus geen risico’s t.g.v. multi-fase transport)
 - Relatief kleine risico’s vergeleken met het hoge-druck alternatief (80 bar)
 - Beheersbaar risico van CO₂-expansie (uitzetting) en afkoeling in de beginfase (wanneer de drukken in het lege gasveld nog laag zijn)
 - De pijpleiding ligt grotendeels in leidingstraten waar het risico van externe beschadiging aanzienlijk kleiner zijn.
• Er zal een grotere dekking gehanteerd worden dan de minimale dekking van 0,80 meter zoals de NEN-3650 voorschrijft. Buiten de leidingstraten en particuliere percelen zal een waarschuwingslint boven de leiding toegepast worden.

• Kwaliteitsbeheersmaatregelen voor de aankoop en constructie (bijvoorbeeld lasinspectie) van de pijpleiding.

• De pijpleiding is geschikt voor interne inspectie.

• Verder vindt de normale procesbeheersing plaats (op druk, temperatuur en debiet).

• Visuele inspectie (inclusief CO₂-metingen) vindt tweemaal per week plaats ter bepaling OCT.

• Visuele lokatie inspectie vindt wekelijks plaats.

• Precies in kaart brengen van de leidingtracés bij verschillende instanties zodat bij activiteiten nabij de leiding rekening wordt gehouden met de aanwezigheid en ligging ervan, conform de Wet Informatie uitwisseling Ondergrondse Netwerken (Wion).

Putten

• De putten in de Barendrechtvelden zijn in het algemeen van goede kwaliteit.

• Voordat CO₂-injectie starts zullen de putten nogmaals geïnspecteerd worden en waar nodig reparatiewerkzaamheden worden uitgevoerd.

• Door strenge eisen aan het te injecteren CO₂ te stellen (zuiverheid, droogheid, en temperatuur) wordt niet verwacht dat de integriteit van de putten wordt aangetast door CO₂-injectie.

• Er zal, mede omdat het hier een demonstratieproject betreft, met grote regelmaat een putinspectie-programma worden uitgevoerd waarbij verschillende zaken gecheckt en gemeten worden.

• De putten hebben de normale beveiligingssystemen, een ondergrondse en bovengrondse beveiligingsklep. Ingeval van calamiteiten worden deze kleppen gesloten.

• Er zal hoge-druk beveiliging op de putinlaat geplaatst worden; dat wil zeggen dat het systeem zelf insluit als de drukken in de put te hoog worden. Dit om te voorkomen dat de put of het reservoir beschadigd worden.

5.11.5. Eventuele domino-effect in de Buisleidingenstraat

In de Richtlijnen is aangegeven dat aandacht besteed dient te worden aan de eventuele domino-effecten bij het transport in de Buisleidingenstraat. Daarbij gaat het om de effecten van andere buisleidingen op de CO₂-leiding. De risicoschattingen dienen gemaakt te worden conform de geldende richtlijnen. Voor geplande activiteiten bestaat nog geen wettelijk voorschrift. Wel kan worden aangesloten op de kwaliteitsdoelstellingen uit de Wet Milieubeheer. In bijlage 6 is opgenomen de rapportage “Afstanden buisleidingen Buisleidingenstraat” (2008) van het Adviesbureau Schrijvers. Hierin zijn voor de Buisleidingenstraat de uitgangspunten voor de onderlinge afstand tussen pijpleidingen nader getoetst.
Algemeen

De Handleiding Risicoberekeningen stelt het volgende over domino-effecten: Interne domino-effecten ontstaan wanneer het falen van één installatie met gevaarlijke stoffen leidt tot het falen van een ander installatie met gevaarlijke stoffen. Een voorbeeld is het ontstaan van een BLEVE van een drukopslag ten gevolge van een fakkel of een plasbrand. Interne domino-effecten worden niet expliciet meegenomen in een QRA. Alleen bij een situatie waarin het falen van één installatie duidelijk leidt tot het falen van een andere installatie, dient een intern domino-effect meegenomen te worden in een QRA. Een voorbeeld van een dergelijke situatie is wanneer twee LPG reservoirs zodanig dicht bij elkaar staan, dat het instantaan falen van één reservoir (waarschijnlijk) leidt tot het falen van het andere reservoir. In dit geval dient voor het scenario ‘instantaan falen’ in alle gevallen te worden uitgegaan van de inhoud van het grootste reservoir. Additioneel geldt dat er geen casuïstiek beschikbaar is die de faalkans van de CO\textsubscript{2}-leiding ten gevolge van het falen van een andere leiding kan onderbouwen en dat er op dit moment geen handleiding (Nederlandse dan wel internationale) beschikbaar is die concreet aangeeft hoe hiermee omgegaan dient te worden.

Effect van andere leidingen op de CO\textsubscript{2}-leiding binnen de buisleidingenstraat

Binnen de Buisleidingenstraat bevinden zich meerdere leidingen. Door deze leidingen worden verschillende stoffen getransporteerd, zoals aardgas, ethyleen-oxyde en propeen. De onderlinge afstand tussen deze leidingen bedraagt circa 1 meter, welke door SBN worden gekozen op basis van de minimale afstand om escalatie van de ene leiding naar de andere te voorkomen. Adviesbureau Schrijvers stelt dat leidingen in een buisleidingenstraat een kleinere kans op falen hebben dan vergelijkbare leidingen in het veld door de getroffen voorzieningen en de mate van beheer en bewaking van de straat. Dit wordt gereflecteerd in de door PGS3 gegeven lagere faalkans voor leiding in een leidingenstraat, hierbij wordt geen voorbehoud voor domino-effecten gemaakt.
6. Alternatieven en varianten

6.1 Inleiding

Het MER geeft een overzicht van de te verwachten effecten op het milieu bij de compressie, het transport, de injectie en langdurige opslag van CO₂. Centraal hierbij staan de effecten van de voorgenomen activiteit, waarbij het project wordt uitgevoerd volgens de keuzes en werkwijze van de initiatiefnemer. De initiatiefnemer heeft bij het bepalen van de uitvoering echter keuzemogelijkheden afgewogen. Dit hoofdstuk beschrijft de kernelementen van de voorgenomen activiteit, met daarbij verschillende bestudeerde alternatieve mogelijkheden.

6.1.1. Afbakening

Het MER beschrijft de activiteiten van het project Ondergrondse opslag van CO₂ in Barendrecht. Doordat het project als doel heeft de permanente opslag van CO₂ in de diepe ondergrond, is de afbakening van mogelijke alternatieven en varianten hierop gebaseerd. Dit betekent dat een aantal vraagstukken in het verlengde van CO₂-opslag niet aan bod zullen komen.

De afbakening van dit MER tot mogelijkheden van permanente CO₂-opslag houdt in, dat geen onderzoek is gedaan naar alternatieven met betrekking tot onder meer:

- Andere mogelijkheden (voor Shell) om CO₂-emissies te verlagen.
- Effectiviteit van CO₂-opslag in het kader van de klimaatproblematiek.
- Herwinbaarheid van de opgeslagen CO₂.

Er wordt veel onderzoek gedaan naar andere mogelijkheden om CO₂-emissies te reduceren, onder meer door het stimuleren van duurzame energie, zuiniger omgaan met energie en het schoner maken van de fossiele brandstoffen. Een afweging van de mogelijkheden van deze alternatieve vormen van CO₂-reductie ten opzichte van het opslaan van CO₂ in de ondergrond valt buiten het kader van dit MER, zoals ook al is aangegeven door de Commissie voor de m.e.r.

In het verlengde van dit project kunnen vragen aan de orde komen zoals:

- De effectiviteit van CO₂-opslag als maatregel tegen de toename van het broeikaseffect.
- De vraag of dit project een druppel op de gloeiende plaat vormt.
- De vraag of via CO₂-opslag mogelijkheden voor kolengestookte centrales worden versterkt.

De bespreking van deze vragen valt eveneens buiten het kader van dit project. Binnen dit MER wordt uitsluitend ingegaan op de effecten van de ondergrondse opslag van CO₂, met de daarbij behorende activiteiten van CO₂-compressie en transport.
Voor de uitvoering van het project gelden voor de afbakening van mogelijk te onderzoeken alternatieven en varianten de centrale randvoorwaarden zoals beschreven in hoofdstuk 1:

- Alleen veilige opties worden meegenomen.
- De opties dienen kosteneffectief te zijn.
- De opties dienen binnen de randvoorwaarden van de overheidsstender te vallen.

Dit heeft geleid tot onderstaande alternatieven en varianten.

6.1.2. Indeling alternatieven en varianten

Het verschil tussen alternatieven en varianten in de MER-methodiek is dat alternatieven een integrale andere aanpak van het project betreffen. Een variant heeft betrekking op een specifiek onderdeel binnen een alternatief.

Nulalternatief (Referentiesituatie)

De verschillende alternatieven en varianten worden vergeleken ten opzichte van de referentiesituatie. De referentiesituatie bestaat uit de huidige situatie, inclusief autonome ontwikkelingen. Hiervoor is een scherpe afbakening van autonome ontwikkelingen van belang. De referentiesituatie is vastgelegd in het Nulalternatief.

Basisalternatief (BA)

In de startnotitie zijn de geplande activiteiten beschreven. De beschrijving van het project zoals in de startnotitie verwoord, geeft het basisalternatief weer. Tijdens de verdere uitwerking van het project en mede gebaseerd op gevonden milieueffecten, zijn aanpassingen in dit ontwerp aangebracht. Dit heeft geleid tot het voorkeursalternatief.

Voorkeursalternatief (VA)

Het voorkeursalternatief staat centraal in dit MER, aangezien dit overeenkomt met de voorgenomen activiteit. De effecten van het voorkeursalternatief worden ten opzichte van het nulalternatief beschreven. Over het algemeen is het voorkeursalternatief afgeleid van het basisalternatief, waarin een aantal aanpassingen is aangebracht, op basis van de bevindingen van de milieueffectenstudie en van mogelijke nieuwe inzichten of het beschikbaar komen van meer detailinformatie.

Varianten

Voor verschillende onderdelen (leidingtracé, compressoren etc.) binnen het project zijn varianten overwogen. De effecten van deze varianten zijn getoetst. Daarbij wordt het milieueffect van de variant bepaald ten opzichte van het Nulalternatief en tevens vergeleken met het milieueffect van het Voorkeursalternatief.
Hoge druk alternatief (HDA)
In het Voorkeursalternatief is sprake van gasvormig transport van CO\textsubscript{2}. Uit de AMESCO studie en ervaringen elders in de wereld blijkt dat het transport van CO\textsubscript{2} bij voorkeur in superkritische toestand (gas dat zich vloeibaar gedraagt) getransporteerd kan worden. Dit geldt voor projecten met pijpleidingen die significant grotere lengtes hebben, bijvoorbeeld meer dan 50 km. Gebruik maken van hoge druk transport heeft echter gevolgen voor het gehele projectontwerp (zie hoofdstuk 5). Van dit hogere druk alternatief worden eveneens de effecten onderzocht.

Meest Milieuvriendelijk Alternatief (MMA) - mitigatie
Bij het bepalen van milieueffecten kunnen mitigerende maatregelen worden benoemd. Dit zijn aanpassingen aan het ontwerp, waardoor het milieueffect gereduceerd kan worden. Bij de bespreking van de afzonderlijke milieuspecten (deelrapport 2) worden deze beschreven. De mitigerende maatregelen, mogelijk in combinatie met varianten, worden gecombineerd tot het Meest Milieuvriendelijk Alternatief (MMA). De milieueffecten van het Voorkeursalternatief worden vergeleken met de milieueffecten van het MMA.

<table>
<thead>
<tr>
<th>Te toetsen</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nulalternatief</td>
<td>Referentiesituatie, bestaat uit de huidige situatie met autonome ontwikkelingen</td>
</tr>
<tr>
<td>Basisalternatief</td>
<td>Oorspronkelijke ontwerp zoals beschreven in de startnotitie</td>
</tr>
<tr>
<td>Hogere druk alternatief</td>
<td>Beschrijving van een scenario waarin het CO\textsubscript{2} in superkritische toestand wordt getransporteerd</td>
</tr>
<tr>
<td>Voorkeursalternatief</td>
<td>Beschrijving van de voorgenomen activiteit</td>
</tr>
<tr>
<td>MMA</td>
<td>Meest milieuvriendelijke alternatief om het project uit te voeren: alternatief met de minste negatieve milieueffecten (door het meenemen van mitigerende maatregelen en varianten)</td>
</tr>
<tr>
<td>Varianten</td>
<td>Afgewogen opties bij het voorkeursalternatief</td>
</tr>
<tr>
<td>Mitigatie</td>
<td>Maatregelen ter beperking milieueffecten van voorkeursalternatief</td>
</tr>
</tbody>
</table>

In dit hoofdstuk wordt het nulalternatief beschreven (6.2). Vervolgens worden de kenmerken van het basisalternatief kort beschreven (6.3). Voor een uitgebreide beschrijving van het basisalternatief wordt verwezen naar de startnotitie. In 6.4 komt het voorkeursalternatief ter sprake. Daarna worden de verschillen tussen het voorkeursalternatief en het basisalternatief uitgezet (6.5). De getoetste varianten van onderdelen van het voorkeursalternatief worden toegelicht (6.6). Er is aandacht voor mogelijke varianten die voorafgaand aan het MER bekeken zijn, maar niet haalbaar blijken te zijn. Deze worden nader toegelicht maar verder niet getoetst (6.7). Tot slot wordt schematisch een overzicht gegeven van de alternatieven en varianten (6.8).

6.2 Nulalternatief (referentiesituatie)
Het nulalternatief dient als referentie bij de bepaling van effecten van de verschillende alternatieven voor de afvang, het transport en de opslag van CO\textsubscript{2}. Het alternatief beschrijft de situatie, die optreedt indien het project niet zal worden uitgevoerd. Het nulalternatief is gebaseerd op de huidige situatie, waaraan toegevoegd de ontwikkelingen die met grote zekerheid zullen optreden (de autonome ontwikkelingen).
Huidige situatie

De belangrijkste kenmerken van de huidige situatie zijn beschreven in hoofdstuk 4. In het tweede rapport van dit MER wordt per milieuaaspect nader ingegaan op de huidige situatie vanuit het milieuaaspect. Specifiek houdt dit in dat de Shell raffinaderij in Pernis een deel van het CO$_2$ in de atmosfeer blijft emitteren, in de periode dat geen afname plaatsvindt door de glastuinbouw en de frisdrankindustrie. Daarnaast blijft binnen de buisleidingenstraat meer ruimte beschikbaar voor andere pijpleidingen.

Nabij de locatie Barendrecht blijft de Gasbehandelingsinstallatie (GBI) in gebruik, aangezien vanuit verschillende velden in de omgeving de komende jaren nog gas wordt aangevoerd.

Autonome ontwikkelingen

Voor de beide huidige gaswinlocaties geldt als toekomstige ontwikkeling dat de gaswinning stopt, nadat de velden zijn leeggeproduceerd. Als autonome ontwikkeling geldt in deze MER de situatie op de locaties Barendrecht en Barendrecht-Ziedewij, waarbij de gaswinning is stopgezet, maar de locaties nog niet in de oorspronkelijke toestand zijn gebracht. Dit is in overeenstemming met de richtlijnen voor dit MER.

6.3 Basisalternatief

Het basisalternatief is de voorgenomen activiteit zoals beschreven in de startnotitie en omvat de afvang, het transport en de opslag van CO$_2$ in de velden Barendrecht (BRT) en Barendrecht-Ziedewij (BRTZ). Onderstaand zijn de belangrijkste kenmerken nog weergegeven.

<table>
<thead>
<tr>
<th>Project onderdeel</th>
<th>Locatie</th>
<th>Aspecten</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Compressie</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plot 16</td>
<td>Aanleg 2 compressoren (1 MW, 52,5 ton/uur per stuk)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aansluiting op CO$_2$-leidingsysteem</td>
</tr>
<tr>
<td>2 Pijpleiding</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pijpleidingtracé</td>
<td>Plot 16 (Pernis) naar Barendrecht</td>
</tr>
<tr>
<td></td>
<td>Transportroute</td>
<td>Leiding grotendeels in bestaande buisleidingenstraat.</td>
</tr>
<tr>
<td></td>
<td>Lengte</td>
<td>lengte 16,5 km ondergrondse leiding</td>
</tr>
<tr>
<td></td>
<td>Diepteligging (m-mv)</td>
<td>diepteligging: 1,2 meter en 1,0 meter onder maaiveld</td>
</tr>
<tr>
<td></td>
<td>Diameter</td>
<td>diameter 355 mm (14 inch)</td>
</tr>
<tr>
<td></td>
<td>Wanddikte</td>
<td>5,2 mm (reguliere veldstrekking)</td>
</tr>
<tr>
<td></td>
<td>Materiaal</td>
<td>Staal/PE API-5L-X52</td>
</tr>
<tr>
<td></td>
<td>Druk</td>
<td>druk maximaal 40 bar; gasvormig CO$_2$</td>
</tr>
<tr>
<td></td>
<td>Functie</td>
<td>Transportleiding mede te gebruiken voor opvang van drukverschillen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Compressie</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deel 1</td>
<td>Aanleg Injectiecompressor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aanpassen put van winput naar injectieput</td>
</tr>
<tr>
<td></td>
<td>BRT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deel 2</td>
<td>Injectiecompressor BRT wordt herplaatst naar BRTZ</td>
</tr>
<tr>
<td></td>
<td>BRTZ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aanleg 2° compressor op BRTZ na 12 jaar</td>
</tr>
</tbody>
</table>
Voorkeursalternatief

Ten opzichte van het basisalternatief zijn enkele aanpassingen gedaan wat heeft geleid tot het voorkeursalternatief. De aanpassingen zijn gebaseerd op de richtlijnen van de provincie Zuid-Holland, de reacties van omwonenden tijdens inspraakavonden en op de website, overleg met de bevoegde gezagen en voortschrijdend technisch en praktisch inzicht. De volgende aanpassingen ten opzichte van het Basisalternatief, zoals verwoord in de startnotitie, zijn doorgevoerd;

Aanleg van de transportleiding

- Bij de aanleg van de transportleiding zal het bemalingswater worden behandeld, zodat aan de waterlozingsnormen van het waterschap kan worden voldaan.
- De kruising in de Buisleidingenstraat met een archeologisch waardevol gebied is in overleg met SBN en het bevoegd gezag uitgewerkt.
- Op een tweetal plaatsen buiten de Buisleidingenstraat zullen de mogelijke archeologische waarden in de ondergrond worden gespaard door de transportleiding met behulp van een gestuurd boring aan te leggen.
- Toepassen van mitigerende ecologische maatregelen, waarbij onder meer rekening wordt gehouden met het broedseizoen.
- Het leidingtracé zal ter hoogte van de Molenpolderse zeedijk gebruik maken van een ligging aan de zuidzijde in plaats van de noordzijde.
CO₂-injectie

- Gasproductie op de locatie Barendrecht–Ziedewij zal een periode worden voortgezet, terwijl CO₂-opslag al plaatsvindt, zowel voor commerciële redenen als om te dienen als leereffect.
- De beide reservoirs zullen niet volledig tot de oorspronkelijke druk worden opgevuld, maar circa 8 bar lager. Dit is een veiligheidsaanpassing, ter compensatie van mogelijke druktoename in het reservoir ten gevolge van chemische processen.
- De injectiestrategie is verder geoptimaliseerd door de zogenaamde irreversibele spanningsopbouw te beperken en extra drukbeveiligingen aan te brengen. De kans op ongewenste fase-overgangen is gereduceerd door de injectietemperatuur te verhogen.
- Op de locatie Barendrecht-Ziedewij vindt een aanvullende aanpassing van één van de putten plaats. Door in deze put een perforatie te maken ter plaatse van het reservoir, kan deze aanvullend als monitoringput worden ingezet.

Mitigerende maatregelen op basis van de risico analyses

- De putten op de locatie Barendrecht zijn getest, waarbij is gebleken dat het cement voorafgaand aan de CO₂-injectie nog verbeterd kan worden. Zowel voor injectie van CO₂ als na beëindiging zal aanpassing van de putcementering plaatsvinden.

Monitoringprogramma

- Het monitoringprogramma is ontworpen om op effectieve wijze inzicht te hebben in de opslag van CO₂. Het programma is verder uitgebreid om aanvullende informatie te geven aan toezende instanties en betrokkenen. Het is de verwachting dat in de toekomst volstaan kan worden met een minder intensief monitoringprogramma.
- Het seismisch nulonderzoek. De seismische onderzoeken kunnen vooral duidelijkheid geven in hoeverre zich CO₂ in de omringende waterlagen bevindt. Het nulonderzoek vormt de basis waarmee later onderzoek kan worden vergeleken om vast te stellen of in de omringende waterlagen alsnog CO₂ terecht is gekomen.
- Ter bepaling van mogelijke putlekkage wordt gebruik gemaakt van akoestische meetapparatuur.

6.5 Hogere druk alternatief

Bij het Voorkeursalternatief (de voorgenomen activiteit) wordt het CO₂ gasvormig getransporteerd door de pijpleiding naar de injectielocaties. Met toenemende druk in het reservoir, zal de injectiedruk eveneens moeten toenemen. In het Voorkeursalternatief zorgen compressoren op de injectielocatie voor deze druktoename. Als alternatief is onderzocht of de druktoename niet kan worden geregeld vanaf Plot 16, zodat op de injectielocaties geen compressoren hoeven te komen. Dit blijkt technisch niet haalbaar, doordat bij CO₂ faseovergangen tussen de gasfase (tot circa 40 bar) en de superkritische fase (vanaf circa 75 bar) in de pijpleiding ongewenste neveneffecten hebben. Dit betekent dat de transport van CO₂ zal moeten plaatsvinden, of geheel in gasfase (Voorkeursalternatief) of geheel in superkritische fase (Hoge druk alternatief).
Bij het hoge druk alternatief vindt compressie tot circa 80 bar plaats op Plot 16, zodat transport door de pijpleiding in superkritische fase kan plaatsvinden. Er is wereldwijd relatief veel ervaring met het transport van CO\textsubscript{2} in superkritische fase. Ter plaatse van de injectielocatie is pas in de loop van het project aanvullende compressie vereist. Het gevolg hiervan is dat bij de injectielocaties minder installaties nodig zijn.

In de voorontwerpfase zijn nog twee opties onderzocht:

- Geen aanvullende compressie ter plaatse van Plot 16, zodat CO\textsubscript{2} wordt getransporteerd bij een lage druk (circa 15 bar)
- Transport met de maximaal benodigde druk, bij 160 bar waarbij CO\textsubscript{2} superkritisch is en geen aanvullende compressie bij de injectielocaties nodig is.

De vier opties, met daarbinnen verdere optimalisaties, zijn getoetst aan technische haalbaarheid, kosten, veiligheid, milieu, benodigde vergunningen en operationele aspecten. Hieruit zijn het Voorkeursalternatief en het Hoge druk alternatief naar voren gekomen als meest kansrijk.

Het Hoge druk alternatief is opgebouwd uit drie stappen:

- In eerste instantie (gedurende 3 jaar) vindt CO\textsubscript{2} transport naar de locatie Barendrecht plaats conform het voorkeursalternatief, met circa 40 bar druk en een compressor op de injectielocatie.
- Daarna zal voor de start van Barendrecht–Ziedewij de druk in de transportleiding opgevoerd worden naar 80 bar (gedurende circa 15 jaar). Bij de locatie Barendrecht–Ziedewij vindt in eerste instantie een verlaging van de druk plaats. Dit leidt tot sterke afkoeling, waarvoor extra verwarming van de te injecteren CO\textsubscript{2} nodig is. Op de injectielocatie is geen compressor.
- In de laatste fase komt er een extra compressor op de locatie Barendrecht–Ziedewij om de extra benodigde druk te realiseren.

Kenmerkend voor het Hoge druk alternatief zijn hiermee:

- Uitbreiding van de compressie (en in het verlengde de koeling) ter plaatse van Plot 16, zodat het CO\textsubscript{2} naar circa 80 bar druk wordt gebracht.
- Aanpassing van de benodigde pijpleiding, waarbij gebruik wordt gemaakt van grotere wanddikte.
- Ter plaatse van de injectielocatie Barendrecht-Ziedewij is minder compressie nodig, dus minder compressoren op de locatie.
- Voor de injectie van CO\textsubscript{2} zal gedurende een periode afname van de CO\textsubscript{2}-druk plaatsvinden. Hierdoor koelt het CO\textsubscript{2} sterk. Aanvullende verwarming van CO\textsubscript{2} wordt voorzien.
6.6 Varianten

In het MER wordt een aantal varianten op het voorkeursalternatief besproken. Het gaat om mogelijke varianten in het ontwerp of in de uitvoering. Doordat de varianten in de ontwerpfase onderzocht zijn, geldt voor de meeste onderzochte mogelijkheden dat deze ofwel als verbetering opgenomen zijn in het voorkeursalternatief (dit blijkt uit de verschillen tussen het voorkeursalternatief en het basisalternatief) danwel als mogelijke mitigatie benoemd zijn.

Uiteindelijk zijn er twee varianten in het MER meegenomen, welke betrekking hebben op de transportleiding:

- Er is een variant met een grotere diameter van de transportleiding voor CO₂-transport. In het voorkeursalternatief wordt uitgegaan van een diameter van 14 inch. Dit is voldoende voor de transport van de benodigde hoeveelheid CO₂ binnen dit project. Als variant wordt de mogelijkheid van een leiding met een grotere diameter, 28 inch, bekeken. De grotere diameter geldt vooral voor het tracegedeelte in de leidingenstraten. Voor toekomstige ontwikkelingen biedt dit meer mogelijkheden.
- Er zijn drie segmenten in het leidingtracé waarbij een aangepaste ligging van de transportleiding is onderzocht.

Varianten leidingtracé

Op kaart 9G, 9H en 9I zijn de varianten van leidingtracé segmenten weergegeven. Onderstaand worden ze kort beschreven:

Variant 1 – Molenpolderse Zeedijk – kaart 9G

Bij deze variant bevindt de CO₂-leiding zich aan de noordzijde van de Molenpolderse Zeedijk en is onderdeel van het Basisalternatief. Het Voorkeursalternatief bevindt zich aan de zuidzijde, aan de taludrand van de dijk of nog iets zuidelijker, de zuidelijke berm van de watergang. Deze ligging heeft de voorkeur van de Gemeente Albrandswaard in verband met bestaande leidingen en is daarom opgenomen in het Voorkeursalternatief.

Variant 2 – Toegang tot injectielocatie Barendrecht – kaart 9H

Deze variant heeft betrekking op de kruising van de Carnisseweg en Kilweg. Het tracé volgt tot aan het Kilpad andere kabels en leidingen. Om vervolgens vanaf het Kilpad naar de injectielocatie Barendrecht bij het Vaanpark te komen moeten achtereenvolgens een persing en een zinker worden uitgevoerd. Deze variant is specifiek voor een grotere leidingdiameter geschikt.
Variant 3 – toegang tot injectielocatie Barendrecht-Ziedewij – kaart 9J

Ter hoogte van de toegang tot de injectielocatie Barendrecht-Ziedewij bevindt zich de derde variant. Deze variant is voorzien in particuliere grond, waarbij achtereenvolgens een watergang en 2 leidingkruisingen gerealiseerd moeten worden, om vervolgens circa 175 m vanaf de Leedeweg af te buigen naar de injectielocatie Barendrecht-Ziedewij en daar nogmaals een leiding te kruisen.

Drie afgevallen varianten

Nabij variant 2– kaart 9H:
De afgevallen variant bevindt zich langs de Kilweg. De CO$_2$-leiding is hierbij niet in de noordelijke berm van de watergang maar in de zuidelijke berm van de watergang geprojecteerd. Het tracé zou hiermee tussen de watergang en de Kilweg in komen te liggen. Gezien de wegfunctie (gedeeltelijke stremming is niet gewenst) en de beperkte ondergrondse ruimte, is deze variant komen te vervallen.

Afgevallen varianten bij Kilweg – kaart 9I:
Een van de oorspronkelijke uitgangspunten is het volgen van de bestaande NAM-leiding. Bij deze variant komt de CO$_2$-leiding naast de bestaande NAM-leiding te liggen. Gezien de beperkte ruimte, de wegfunctie van de Leedeweg en toekomstige bebouwingsplannen van de Gemeente voor de noordelijk gelegen percelen, is deze variant komen te vervallen.
De tweede afgevallen variant is gebaseerd op het uitgangspunt de bestaande kabels en leidingen te volgen. Door de reeds aanwezige kabels en leidingen en het wisselende talud van de sloot is er echter onvoldoende ruimte om de CO\textsubscript{2}-leiding in de zuidelijke berm van het Kilpad aan te leggen. Dit alternatief is dan ook komen te vervallen.

6.7 Niet geselecteerde varianten

Naast alle bovenstaande varianten zijn er meerdere uitvoeringsmogelijkheden die in eerste instantie voor de hand liggen, maar waarvan de uitvoering technisch en economisch gezien zeer moeilijk is. Deze varianten zijn in de ontwerpfase bestudeerd maar bij de technische selectie afgevallen. Onderstaand worden deze varianten kort toegelicht met daarmee de belangrijkste afweging waarom de varianten niet geselecteerd zijn.

Puttenplan

Er is aangenomen dat zoveel mogelijk gebruik wordt gemaakt van de bestaande putten. Injectie vindt plaats met behulp van één injectieput per injectielocatie. Als varianten is gekeken naar:

- Nieuwe putten in plaats van hergebruik bestaande productieputten. Om corrosie door CO\textsubscript{2}-houdende vloeistoffen te voorkomen, is bij hergebruik een aanpassing van de putten nodig. Als variant is bekeken of nieuwe putten geplaatst kunnen worden. Aangezien de huidige putten met beperkte aanpassingen hergebruikt kunnen worden, is de aanleg van nieuwe putten niet zinvol.
- Gebruik maken van één of meerdere injectieputten. Op de locatie Barendrecht bevinden zich twee productieputten en op de locatie Barendrecht-Ziedewij vier. Per locatie wordt één put gebruikt voor injectie en één voor monitoring. De optie om met behulp van meerdere putten te injecteren is overwogen, maar afgevallen.

Andere route

In de voorfase is een geheel andere route onderzocht. Dit tracé is gepland door het huidige agrarische gebied ten zuiden van de Gemeente Barendrecht. In de toekomst wordt dit een natuurgebied en dat is de reden dat deze route is afgevallen.

6.8 Meest milieuvriendelijk alternatief

Voor het meest milieuvriendelijke alternatief (MMA) worden varianten samengebracht waarbij de effecten op het milieu lager zijn. Tijdens de uitvoering van het MER komt zicht op mogelijke milieueffecten. In deze MER zijn de mogelijke maatregelen om de optredende effecten te beperken, opgenomen in het Voorkeursalternatief. Paragraaf 6.4 geeft hiervan een overzicht. Als gevolg hiervan komt het MMA overeen met het Voorkeursalternatief.

Indien buiten deze aanpassingen nog aanvullende mogelijkheden zich voordoen, kunnen deze worden opgenomen in het MMA.

Nadat de effecten van alternatieven en varianten zijn getoetst wordt het MMA vastgesteld. In hoofdstuk 9 wordt op basis van de bevindingen het MMA toegelicht.
7. Milieueffecten reguliere operationele omstandigheden

7.1 Inleiding

In deelrapport 2 van dit MER wordt ingegaan op de milieueffecten, die in de biosfeer kunnen optreden bij normale operationele omstandigheden. Daarbij worden de relevante beleidsaspecten beschreven, de huidige situatie, de gevolgen van autonome ontwikkelingen en vervolgens de te verwachten milieu-effecten bij de verschillende alternatieve en varianten. In dit hoofdstuk wordt een samenvattend overzicht gegeven van deze milieueffecten. In het hoofdstuk 8 wordt aandacht besteed aan de milieueffecten die kunnen optreden in de diepe ondergrond.

Biosfeer en diepe ondergrond

De effecten van de voorgenomen activiteit op het milieu hebben in het MER over het algemeen betrekking op de biosfeer. De biosfeer wordt daarbij gezien als het gedeelte van de aarde waar leven mogelijk is. Dit bestaat uit de lucht, het water en de ondergrond. In de vaste aardbodem is de biosfeer met uitzondering van bacteriën enkele meters diep. Over het algemeen wordt de bodem tot circa 200 m diep meegenomen en moet de grondwater zichtbaar gemaakt worden. De diepere steenformaties vallen hier buiten. Omdat CO\(_2\)-opslag in deze diepe steenformaties effecten zouden kunnen optreden, die uiteindelijk invloed hebben op de biosfeer, wordt hier in dit MER in deelrapport 3 specifiek aandacht aan besteed.

Leeswijzer

In paragraaf 7.2 wordt een overzicht gegeven van de te toetsen milieuaaspecten, de relevante onderwerpen per milieuaaspect en de wijze waarop de effecten hiervan zijn bepaald. De milieueffecten worden geclassificeerd aan de hand van een classificatiesysteem, zoals beschreven in paragraaf 7.3. Vervolgens komen de milieuaaspecten in samengevatte vorm in paragraaf 7.4 aan de orde. De geclassificeerde effecten staan in tabellen weergegeven in paragraaf 7.5.

7.2 Overzicht toetsingscriteria

In tabel 7.1 zijn per milieuaaspect de relevante onderwerpen weergegeven. Voor de effectbepaling zijn verschillende onderzoeksmethoden en informatiebronnen gebruikt, zoals:

- Bureaustudies, waarbij gegevens uit beschikbare rapporten en anderszins verzameld zijn.
- Ontwerpgegevens, waarbij gebruik is gemaakt van technische informatie uit het ontwerp van installaties en andere onderdelen.
- Berekeningen waarbij effecten bepaald zijn aan de hand van gekwantificeerde gegevens.
- Modelberekeningen, waarbij op basis van schematisaties berekeningsmodellen zijn gebouwd en gebruikt om effecten zichtbaar te maken.
- Veldwaarnemingen, waarbij lokale waarnemingen zijn uitgevoerd, om mogelijke effecten zo goed mogelijk te bepalen.
<table>
<thead>
<tr>
<th>Milieuaspect</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bodem</td>
<td></td>
</tr>
<tr>
<td>Bodembeweging</td>
<td>Bodemstijging of bodemdaling</td>
</tr>
<tr>
<td>Bodemverstoring</td>
<td>Omvang van bodemvergraving (evt. in waardevolle gebieden) en grondverzet</td>
</tr>
<tr>
<td>Bodemkwaliteit</td>
<td>Vergraving van verontreinigde bodems</td>
</tr>
<tr>
<td></td>
<td>Veroorzaken van verontreiniging</td>
</tr>
<tr>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>Grondwater</td>
<td>Omvang van bemaling en bemalingseffecten</td>
</tr>
<tr>
<td></td>
<td>Veroorzaken verontreiniging grondwater</td>
</tr>
<tr>
<td>Oppervlaktewater</td>
<td>Veroorzaken verontreiniging oppervlaktewater (lozing bemalingswater)</td>
</tr>
<tr>
<td>Waterberging</td>
<td>Omvang (af/toename) van verhard oppervlak, waterbergend vermogen</td>
</tr>
<tr>
<td>Ecologie</td>
<td></td>
</tr>
<tr>
<td>Flora</td>
<td>Invloed op flora (vernietiging, verdroging)</td>
</tr>
<tr>
<td>Fauna</td>
<td>Invloed op fauna (verstoring, vernietiging), geluidseffecten op vogels</td>
</tr>
<tr>
<td>Waardevolle gebieden</td>
<td>Invloed op waardevolle gebieden, verstoring VHR-gebieden, Ecologische Hoofd</td>
</tr>
<tr>
<td></td>
<td>Structuur [EHS], Natura 2000</td>
</tr>
<tr>
<td>Landschap en cultuurhistorie</td>
<td></td>
</tr>
<tr>
<td>Zichtbaarheid in omgeving</td>
<td>Omvang (zoals hoogte) van gebouwen en installaties</td>
</tr>
<tr>
<td>Aantasting landschappelijke karakteristieken</td>
<td>Relatie met omgeving</td>
</tr>
<tr>
<td>Archeologie</td>
<td></td>
</tr>
<tr>
<td>Verstoring bodemschatten</td>
<td>Kwantitatieve en kwalitatieve verwachtingswaarde</td>
</tr>
<tr>
<td>Geluid</td>
<td></td>
</tr>
<tr>
<td>Geluidhinder gevelbelasting</td>
<td>Overschrijding etmaalwaarden en maximale geluidsniveaus</td>
</tr>
<tr>
<td>Geluidhinder ecologie</td>
<td>Verstoring fauna (vooral weidevogels) binnen 40 dB(A) contour</td>
</tr>
<tr>
<td>Emissies</td>
<td></td>
</tr>
<tr>
<td>Lucht</td>
<td>Uitstoot van gassen installaties (zoals via ventpijp en overdrukventielen)</td>
</tr>
<tr>
<td></td>
<td>Uitstoot van uittaagassen (zie verkeer en vervoer)</td>
</tr>
<tr>
<td>Geur</td>
<td>Uitstoot van (sterk) geurende stoffen</td>
</tr>
<tr>
<td>Licht</td>
<td>Lichtemissies, effect op duisternis</td>
</tr>
<tr>
<td>Verkeer en vervoer</td>
<td></td>
</tr>
<tr>
<td>Vervoersbewegingen</td>
<td>Toename van aantal transportbewegingen, routes en alternatieve routes</td>
</tr>
<tr>
<td>Afgeleide effecten</td>
<td>Verkeersveiligheid, geluid- en trillinghinder, luchtkwaliteit</td>
</tr>
<tr>
<td>externe veiligheid</td>
<td></td>
</tr>
<tr>
<td>Plaatsgebonden risico</td>
<td>PR-contouren</td>
</tr>
<tr>
<td>Groepsrisico</td>
<td>GR Bepaling</td>
</tr>
<tr>
<td>Afvalstoffen en hulpstoffen</td>
<td></td>
</tr>
<tr>
<td>Verwerking afvalstoffen</td>
<td>Afvalketen, hergebruik, Landelijk Afvalbeheerplan (LAP)</td>
</tr>
<tr>
<td>Energie</td>
<td></td>
</tr>
<tr>
<td>Energieverbruik</td>
<td>Benodigde energie compressoren</td>
</tr>
<tr>
<td>Energieopbrengst</td>
<td>Hergebruik restwarmte o.i.d.</td>
</tr>
<tr>
<td>Leklaged CO₂</td>
<td>Energiegebruik bij gecontroleerde depletie</td>
</tr>
<tr>
<td>Ondergrond</td>
<td></td>
</tr>
<tr>
<td>Reservoir</td>
<td>Afdekende laag (druk, chemische reacties, seismiciteit)</td>
</tr>
<tr>
<td></td>
<td>Reservoirgesteente (druk, chemische reacties, seismiciteit)</td>
</tr>
<tr>
<td></td>
<td>Breuken/breuklijnen (druk, chemische reacties, seismiciteit)</td>
</tr>
<tr>
<td></td>
<td>(oude) putten (druk, chemische reacties, seismiciteit)</td>
</tr>
<tr>
<td>Omgeving reservoir</td>
<td>Waterverplaatsing nabij reservoir</td>
</tr>
<tr>
<td>Monitoring</td>
<td>Mogelijkheden via monitoring processen te bewaken</td>
</tr>
<tr>
<td>Andere functies</td>
<td>Beperking van andere mogelijke functies in en om het reservoir</td>
</tr>
</tbody>
</table>
7.3 Classificatie

In deze MER wordt gebruik gemaakt van een 7-punt score, vanaf ‘- - -’ tot aan ‘+ + +’. Daarbij is de beschrijving uit tabel 7.2 aangehouden.

Tabel 7.2 Overzicht classificatie

<table>
<thead>
<tr>
<th>Score</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘- - -’</td>
<td>negatief effect, zodanig dat milieueffect buiten de normen van regelgeving en beleid valt</td>
</tr>
<tr>
<td>‘- -’</td>
<td>negatief effect, relatief groot of in een kritische periode of gebied</td>
</tr>
<tr>
<td>‘-’</td>
<td>negatief effect maar relatief beperkt of alleen lokaal</td>
</tr>
<tr>
<td>‘0’</td>
<td>geen effect of zodanig beperkt dat het niet significant is</td>
</tr>
<tr>
<td>‘+’</td>
<td>positief effect, maar relatief beperkt of alleen lokaal</td>
</tr>
<tr>
<td>‘+ +’</td>
<td>positief effect vrij groot of in een kritisch gebied</td>
</tr>
<tr>
<td>‘+ + +’</td>
<td>positief effect, groot van omvang en zodanig dat een overschrijding van normen wordt opgeheven</td>
</tr>
<tr>
<td>‘nvt’</td>
<td>niet van toepassing</td>
</tr>
</tbody>
</table>

7.4 Effectbeschrijving tijdens normale operationele activiteiten

Onderstaand worden de belangrijkste milieueffecten, die kunnen optreden tijdens reguliere operationele activiteiten, samengevat. Daarbij is gekeken naar de effecten van de verschillende projectonderdelen in de aanlegfase, injectiefase, beëindigingfase en de post-injectiefase (monitoring na afronding van de CO\textsubscript{2}-injectie). In deelrapport 2 is een overzicht gegeven van alle mogelijke milieueffecten, inclusief de effecten die uiteindelijk nihil blijken te zijn. Onderstaand ligt de nadruk op de geconstateerde milieueffecten.

7.4.1. Bodem

Voor het milieuaaspect bodem is onderzoek gedaan naar bodembeweging, bodemverstoring en bodemkwaliteit.

Bodembeweging

De aanleg van de transportleiding vindt in den droge plaats. Dit wordt bereikt door een tijdelijke grondwaterbemaling, waarbij de grondwaterstand 0,20 tot 2,00 meter (zie ook 5.6) wordt verlaagd. Hierbij wordt geen zetting verwacht, omdat de verlaging van de grondwaterstand grotendeels binnen de normale jaarlijkse variatie van de grondwaterstand blijft. Voor de aanpassingen op de locaties Plot 16, de injectielocaties Barendrecht en Barendrecht–Ziedewij geldt dat er een tijdelijk bemaling plaats vindt, in gebieden waar eerder grondwaterstandverlagingen zijn opgetreden. Hierdoor wordt het effect van zetting als nihil beschouwd.

Bij de winning van gas uit de reservoirs van Barendrecht en Barendrecht–Ziedewij is de druk in de reservoirs verlaagd. Dit heeft een beperkte bodemdaling veroorzaakt van minder dan 2 cm. Bij het opslaan van CO\textsubscript{2} kan ten gevolge van de toenemende druk in het reservoir, beperkte uitzetting ontstaan. Bodemstijging wordt veroorzaakt door toename van de gasdruk in de reservoirs. Deze bodemstijging zal eveneens minder dan 2 cm bedragen. Dit heeft voor de bewoning en het gebruik van het gebied geen effect doordat in het midden over een relatief groot gebied de bodem iets hoger komt te liggen, met afvalkapping naar de randen van het gebied.
In het gebied hebben in het verleden geen bodemtrillingen plaatsgevonden als gevolg van de gaswinning in de reservoirs van Barendrecht en Barendrecht-Ziedewij. Vanwege het feit dat de kans op bodemtrillingen afneemt als de reservoirs worden gevuld met CO₂, worden ook in de toekomst geen bodemtrillingen verwacht.

Bodemverstoring

Effecten met betrekking tot bodemverstoring treden op in de aanlegfase met name bij de aanleg van de pijpleiding. Op veel plaatsen waar wordt gegraven, is de bodem reeds verstoord. Waar de bodem ongeroerd is, worden geen bijzondere bodems vergraven en is de ontgravingsdiepte gering ten opzichte van de totale dikte van de deklaag. Bij de aanleg van de pijpleiding wordt de vergraven grond weer teruggelegd. Er zal een kleine hoeveelheid bodem afgevoerd worden. Het effect van bodemverstoring is lokaal en wordt als licht negatief gescoord.

Bodemkwaliteit

Het vergraven van grond en het oppompen van grondwater kan leiden tot het aantrekken of verplaatsen van bodemverontreinigingen. Op grond van de beschikbare gegevens ten aanzien van bodemverontreinigingen wordt geconcludeerd dat hooguit ter plaatse van één of twee plaatsen langs het leidingtracé mogelijk verontreinigde grond vrijkomt. Dit hangt af van de exacte ligging en omvang van de geconstateerde verontreinigingen in relatie tot de ligging van het leidingtracé. Indien een verontreiniging wordt aangetroffen, zal deze worden verwijderd, wat voor de omgeving een licht positief effect heeft.

Alternatieven en varianten leiden in beperkte mate tot andere effecten op de bodem. Onderstaand is aangegeven dat op het milieuaspect bodem vrijwel geen effecten optreden.

Tabel 7.4.1 Overzicht effecten bodem

<table>
<thead>
<tr>
<th>Bodem</th>
<th>Plot 16</th>
<th>Pijpleidingtracé</th>
<th>Barendrecht</th>
<th>Barendrecht-Ziedewij</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bodembeweging aanlegfase (zetting)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bodembeweging (post-) injectiefase (stijging en trilling)</td>
<td>nvt</td>
<td>nvt</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bodemverstoring aanlegfase</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bodemkwaliteit aanlegfase</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Calamiteiten</td>
<td>lokaal mogelijk CO₂ in de bodem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basisalternatief</td>
<td>geen verschil met Voorkeursalternatief</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoge druk alternatief</td>
<td>minder vergraving op de injectielocaties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variant grotere diameter</td>
<td>tot iets grotere diepte afgraven in leidingtracé</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variant andere tracééleden</td>
<td>vergelijkbaar met Voorkeursalternatief</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.4.2. Water

Voor het milieuaspect water is onderzoek gedaan naar de kwalitatieve en kwantitatieve effecten op het grondwater en het oppervlaktewater. De effecten op grond- en oppervlaktewater zijn afhankelijk van bemaling en lozing, het waterbergend vermogen, verontreinigingen en doorkruiising van watergangen.
Grondwater

Tijdens de aanlegfase zal de grondwaterstand op de verschillende locaties en langs het leidingtracé door middel van bemaling tijdelijk verlaagd moeten worden. De verlaging van de grondwaterstand zal grotendeels tussen de gemiddeld hoogste en gemiddeld laagste grondwaterstand vallen.

De bemaling is van tijdelijke aard, waarbij ook de kans op het aantrekken van verontreinigingen ter plaatse van het tracé gering is. Langs het leidingtracé wordt het effect als licht negatief beoordeeld.

Oppervlaktewater

De nieuw te plaatsen compressor op Plot 16 zal worden aangesloten op het bestaande koelsysteem voor de reeds bestaande compressoren. Dit betreft een gesloten glycol koelsysteem dat wordt gekoeld met water uit de Oude Maas. De hoeveelheid water dat gebruikt zal worden voor koeling, 2.000 m³/uur, blijft gelijk. Het te lozen water zal ten opzichte van de huidige situatie iets opwarmen. Deze toename is echter gering (maximaal 0,6 °C) en valt binnen de marges van de wettelijke randvoorwaarden. Het effect op het oppervlaktewater wordt dan ook als nihil beoordeeld.

Waterberging

In de aanlegfase vindt toename van verhard oppervlak plaats. De grootste toename van verharding vindt plaats op Plot 16, waar de verharde oppervlakte met 750 m² wordt uitgebreid. De toename van het verharde oppervlak heeft een geringe afname van de grondwateraanvulling tot gevolg. Over het geheel gezien zal de toename geen effect hebben op de ‘grondwaterfuncties’. De uitbreidingen van de locaties Barendrecht en Barendrecht-Ziedewij vinden plaats op de bestaande verharde oppervlakte. De effecten op het waterbergende vermogen en de grondwateraanvulling worden dan ook neutraal beoordeeld.

Na beëindiging van de CO₂-injectie zullen de locaties Barendrecht en Barendrecht-Ziedewij worden verlaten. De verwachting is dat dit gepaard zal gaan met een afname van het verharde oppervlak.

Mitigerende maatregelen met betrekking tot het lozen van bemalingswater zijn opgenomen in het Voorkeursalternatief, waardoor het Voorkeursalternatief beter scoort dan het Basisalternatief. Andere alternatieven en varianten leiden slechts beperkten tot andere effecten op het milieuaspect water, ten opzichte van het Voorkeursalternatief.
Tabel 7.4.2 Overzicht effecten water

<table>
<thead>
<tr>
<th>Water</th>
<th>Plot 16</th>
<th>Pijpleidingtracé</th>
<th>Barendrecht</th>
<th>Barendrecht-Ziedewij</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grondwater kwantiteit (aanlegfase)</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oppervlaktewater kwaliteit / kwantiteit</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oppervlaktewatersteem (aanlegfase)</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Waterbergig</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Calamiteiten	lokaal mogelijk CO₂ in het grondwater
Basisalternatief	bij Basisalternatief treden effecten op bij lozing bemalingswater
Hoge druk alternatief	minder bemaling op locatie
Variant grotere diameter	meer bemaling doordat pijpleiding dieper komt te liggen
Variant andere tracédelen	vergelijkbaar met Voorkeursalternatief

7.4.3. Ecologie

Voor het aspect ecologie is onderzoek gedaan naar de effecten van de voorgenomen activiteit ten aanzien van bijzondere gebieden, beschermde soorten en overige soorten.

Uit veldonderzoek is naar voren gekomen dat ter plaatse van het leidingtracé geen bijzondere plantensoorten voorkomen. Ten aanzien van de fauna geldt dat het agrarische gebied van belang is voor broedende weidevogels als de Kiebit, de Scholkmot en de Gele kwikstaart. In de schaarse overhoekjes broeden incidenteel de Patrijs en de Roodborsttapuit. ‘s Winters is het gebied van belang voor overwinterende ganzensoorten.

Tijdens de aanlegfase kunnen planten- en diersoorten door graafwerkzaamheden, visuele en akustische effecten verstoord worden. Voor geen van deze soortgroepen zullen de werkzaamheden leiden tot een effect op de gunstige staat van instandhouding van de soort. Er zal een tijdelijke versterking van deze dieren plaats kunnen vinden. Als onderdeel van het Voorkeursalternatief worden mitigerende maatregelen uitgevoerd. Deze beheersmaatregelen zijn onderdeel van het Voorkeursalternatief en onderscheiden zich daarbij van het Basisalternatief. Bij uitvoering van deze maatregelen worden voor overige soorten alleen lokale effecten als gevolg van de werkzaamheden in de aanlegfase verwacht (licht negatieve score). Ontheffing van de Flora- en faunawet is niet vereist, aangezien het effect op beschermde soorten nihil is.

Gebieden

De pijpleiding is deels gepland in de (Provinciale) Ecologische Hoofdstructuur (P)EHS. Tijdens de aanlegfase kan er tijdelijk, als gevolg van de werkzaamheden, geluidsverstoring optreden. Dit is een tijdelijk effect en daarmee licht negatief. Na afloop van de werkzaamheden vindt er geen geluidsbelasting meer plaats.

Ook effecten op soorten of habitattypen van het Natura 2000-gebied worden niet verwacht. De Noordse woelmuis is bekend van Klein profijt en de Berenplaat. Deze liggen op een zodanige afstand van het leidingentracé dat er geen effect op de soort verwacht wordt. De habitattypen worden tijdens de aanleg- en injectiefase niet aangetast.

Mitigerende maatregelen met betrekking tot verstoring van weidevogels zijn opgenomen in het Voorkeursalternatief, waardoor het Voorkeursalternatief beter scoort dan het Basisalternatief. Andere alternatieven en varianten leiden slechts beperkt tot andere effecten op het milieuaspect water, ten opzichte van het Voorkeursalternatief.

Tabel 7.4.3 Overzicht effecten ecologie

<table>
<thead>
<tr>
<th>Ecologie</th>
<th>Plot 16</th>
<th>Pijpleidingtracé</th>
<th>Barendrecht</th>
<th>Barendrecht-Ziedewij</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beschermde soorten in aanlegfase</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Overige soorten in aanlegfase</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gebieden aanlegfase (geluidbelasting)</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gebieden, beschermde- en overige soorten</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>injectiefase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calamiteiten</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lokaal indirect door CO₂ in bodem, water of lucht</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basisalternatief</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mogelijk effect op weidevogels tijdens broedseizoen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoge druk alternatief</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vergelijkbaar met Voorkeursalternatief</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variant grotere diameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vergelijkbaar met Voorkeursalternatief</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variant andere tracédelen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vergelijkbaar met Voorkeursalternatief</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Na realisatie van de aanleg van de leidingen treden geen negatieve effecten op. Voor de injectiefase en de post-beëindigingfase zijn geen effecten beschreven. In de beëindigingfase wordt een positief effect bereikt op de aanwezigheid van (beschermde) soorten door de landschappelijke inpassing van locatie Barendrecht-Ziedewij na ontmanteling van de injectie-installatie.

7.4.4 Landschap en cultuurhistorie

Voor het beoordelen van de effecten ten aanzien van landschap en cultuurhistorie is in het MER getoetst aan de aspecten zichtbaarheid en aantasting van landschappelijke en cultuurhistorische waarden.

De werkzaamheden in de aanlegfase zijn van tijdelijke aard en hebben als zodanig geen invloed op het landschap. Daarnaast is het voorkomen van machines in de omgeving niet vreemd zodat er nauwelijks impact op landschap en cultuurhistorie is.
De bouwwerken op Plot 16 gaan vrijwel volledig op in het industriële landschap van Pernis, waardoor de visuele impact verwaarloosbaar is. De locatie Barendrecht ligt weliswaar aan de (zuid)rand van de bebouwing, doch behoort in visueel-ruimtelijke zin tot het bedrijventerrein Vaan Park. Aan de oostzijde wordt de locatie afgeschermd door de verhoogd gelegen A29. Ook hier geldt dat de visuele impact gering is en het effect als verwaarloosbaar wordt beschouwd.

Het belangrijkste effect voor landschap en cultuurhistorie is een negatief effect in de injectiefase voor de locatie Barendrecht-Ziedewij, aangezien het streefbeeld hier ‘ontwikkelen recreatief groen’ is. Het langer in gebruik houden van de locatie, in combinatie met de bouwwerken die op de locatie worden geplaatst, leidt tot dit effect.

Na de injectiefase vindt ontmanteling of herbestemming van de verschillende projectonderdelen plaats, zoals dit ook in de referentie zou plaatsvinden.

Het Hoge druk alternatief zal (beperkt) minder visuele impact hebben op de locatie Barendrecht-Ziedewij door de beperking van installaties. Andere alternatieven en varianten leiden slechts beperkt tot andere effecten op het milieuaspect landschap en cultuurhistorie, ten opzichte van het Voorkeursalternatief.

Tabel 7.4.4 Overzicht effecten landschap en cultuurhistorie

<table>
<thead>
<tr>
<th>Landschap</th>
<th>Plot 16</th>
<th>Pijpleidingtracé</th>
<th>Barendrecht</th>
<th>Barendrecht-Ziedewij</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zichtbaarheid</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Aantasting landschappelijke waarden</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Calamiteiten</td>
<td>Nihil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basisalternatief</td>
<td>vergelijkbaar met Voorkeursalternatief</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoge druk alternatief</td>
<td>minder zichtbare elementen op injectielocatie Barendrecht-Ziedewij</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variant grotere diameter</td>
<td>vergelijkbaar met Voorkeursalternatief</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variant andere tracédelen</td>
<td>vergelijkbaar met Voorkeursalternatief</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.4.5 Archeologie

Voor het milieuaspect archeologie is onderzocht in welke mate verstoring van archeologische waarden plaatsvindt. Archeologische waarden kunnen verstoord worden door werkzaamheden in de aanlegfase. Aan de beschrijving van het aspect archeologie ligt een onderzoeksrapport van RAAP ten grondslag (zie bijlage 4).

Het leidingtracé doorkruist diverse gebieden met een middelhoge tot hoge archeologische verwachting. In dit gebied zijn meerdere archeologische vondsten gedaan en het tracé doorkruist gebieden van geregistreerde archeologische waarde. Dit betreft twee terreinen die bekend zijn als zijnde archeologische monumenten. Het gaat om een terrein van “hoge archeologische waarde” en om een terrein van “zeer hoge archeologische waarde”. Daarnaast wordt een archeologisch monument van “hoge archeologische waarde” op korte afstand gepasseerd. Met de aanwijzing door de overheid van de ligging van de Buisleidingenstraat is in feite bepaald dat op enige termijn de
stroom benut zal gaan worden voor de aanleg van leidingen en daarmee voor het verstoren van het ondergronds archief. Het effect van twee te vergraven gebieden wordt als negatief gewaardeerd.

In het tracé ná de buisleidingenstraat worden ter plaatse van de mogelijke archeologische vondsten gestuurde boringen toegepast waardoor deze gebieden ontzien worden. Dit is een mitigerende maatregel, opgenomen in het Voorkeursalternatief, waarbij het effect ten opzichte van het Basisalternatief wordt beperkt.

Ten aanzien van de locatie Barendrecht-Ziedewij is sprake van een middelhoge verwachting, waardoor de werkzaamheden in de aanlegfase hier als licht negatief worden gewaardeerd.

Mitigerende maatregelen met betrekking tot archeologisch waardevolle gebieden zijn opgenomen in het Voorkeursalternatief, waardoor het Voorkeursalternatief beter scoort dan het Basisalternatief. De overige alternatieven en varianten leiden slechts beperkt tot andere effecten op het milieuaspect archeologie, ten opzichte van het Voorkeursalternatief.

<table>
<thead>
<tr>
<th>Tabel 7.4.5 Overzicht effecten archeologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archeologie</td>
</tr>
<tr>
<td>Aanlegfase</td>
</tr>
<tr>
<td>Overige fasen</td>
</tr>
<tr>
<td>Calamiteiten</td>
</tr>
<tr>
<td>Basisalternatief</td>
</tr>
<tr>
<td>Hoge druk alternatief</td>
</tr>
<tr>
<td>Variant grotere diameter</td>
</tr>
<tr>
<td>Variant andere tracéédelen</td>
</tr>
</tbody>
</table>

7.4.6. Geluid

Voor het aspect geluid is onderzoek gedaan naar de mogelijke geluidshinder voor de omgeving. Hierbij is onderscheid gemaakt tussen geluidshinder voor de mensen (geluidsbelasting op de gevel) en geluidhinder voor de dieren (effecten ecologie).

Zowel in de aanlegfase als bij beëindiging zullen werkzaamheden op de drie locaties (Plot 16 en beide injectielocaties) plaatsvinden. Dit levert lokaal beperkt aanvullend geluid (enkele decibellen), wat als een licht negatief effect is gescoord. Voor het leidingtracé geldt dit alleen in de aanlegfase.

Het totale effect van de extra geluidsemmissie op Plot 16 is in het MER als nihil beoordeeld. Er is een lokale overschrijding van de vigerende vergunning, maar de uitbreiding op Plot 16 is ruim inpasbaar binnen de geluidszone. Ook gezien de industriële aard van de omgeving waarin de activiteiten plaatsvinden, wordt een nihil negatief effect verwacht.
Rondom de locatie Barendrecht is een 50 decibel (dB(A)) geluidscontour vastgesteld. Deze contour is vastgesteld voor de locatie Barendrecht, inclusief de aangrenzende gasbehandelingsinstallatie. Door de voorgenomen activiteit zal de toename van het daadwerkelijke geluidsniveau op de contour niet meer dan enkele dB(A) bedragen. Daarnaast wordt binnen de omgeving, bedrijventerrein met op korte afstand de snelweg A29, geen groot geluidseffect verwacht. Overschrijding van richtwaarden bij woonbebouwing als gevolg van de voorgenomen activiteit is dan ook niet aan de orde.

Rondom de locatie Barendrecht-Ziedewij is eveneens een geluidscontour vastgesteld. In de referentiesituatie zijn de geluidbronnen verwijderd, zodat hier geen geluid meer is. De berekende 50 dB(A) contour komt buiten de grenzen van de locatie. Daarom wordt hier een negatief effect gescoord.

Tabel 7.4.6 Overzicht effecten geluid

<table>
<thead>
<tr>
<th>Geluid</th>
<th>Plot 16</th>
<th>Pijpleidingtracé</th>
<th>Barendrecht</th>
<th>Barendrecht-Ziedewij</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aanlegfase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injectiefase</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Calamiteiten</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basisalternatief</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoge druk alternatief</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variant grotere diameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variant andere tracédel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.4.7. Emissies

Met betrekking tot emissies is in het MER gekeken naar CO₂-emissie, overige emissies en lichtemissies. De specifieke CO₂-emissies als gevolg van elektriciteitsgebruik door compressoren zijn beoordeeld onder ‘energie en CO₂-balans’.

CO₂-emissies

CO₂-emissies binnen de voorgenomen activiteit vinden plaats als gevolg van:

- Verkeersbewegingen en gebruik van materieel.
- Lekverliezen van de compressoren.
- Het van druk aflaten van installaties tijdens onderhoud.
- Het affakkelen van gas bij het testen van de monitoringsputten (inclusief overige emissies).
De hoeveelheid van deze CO$_2$-emissies is zeer gering in vergelijking met de CO$_2$-emissies in de omgeving. De belangrijkste invloed op het gebied van emissies vormt het centrale thema van het project, namelijk een forse reductie van CO$_2$-emissies met circa 0,4 Mton per jaar bij de raffinaderij.

Overige emissies

In de verschillende projectfasen vinden overige emissies plaats, als gevolg van verkeersbewegingen, gebruik van materieel en uitstoot van oliedamp van de compressoren. De hoeveelheid hiervan wordt echter als gering beoordeeld ten opzichte van de hoeveelheid geëmitteerde overige emissies in de omgeving.

Licht

Tijdens de aanlegfase, bij de aanpassing van de injectieput op de locatie Barendrecht, is sprake van een licht negatief effect ten aanzien van licht. Tijdelijk wordt dan 24 uur per dag gewerkt. Overige effecten als gevolg van lichtuitstraling op de verschillende locaties zijn niet significant.

Tijdens calamiteiten kunnen significante hoeveelheden overige emissies vrijkomen. Voor alternatieven en varianten wordt op het milieuaspect emissies geen onderscheid geconstateerd.

Tabel 7.4.7 Overzicht effecten emissies

<table>
<thead>
<tr>
<th>Emissies</th>
<th>Plot 16 (Pernis)</th>
<th>Pijpleidingtracé</th>
<th>Barendrecht</th>
<th>Barendrecht-Ziedewij</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO$_2$-emissie (alle fasen)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Overige emissies (alle fasen)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Licht aanlegfase</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Licht injectiefase</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Calamiteiten, beperkt, weinig emissies afgezien van CO$_2$</td>
<td>vergelijkbaar met Voorkeursalternatief</td>
<td>vergelijkbaar met Voorkeursalternatief</td>
<td>vergelijkbaar met Voorkeursalternatief</td>
<td>vergelijkbaar met Voorkeursalternatief</td>
</tr>
<tr>
<td>Basisalternatief</td>
<td>vergelijkbaar met Voorkeursalternatief</td>
<td>vergelijkbaar met Voorkeursalternatief</td>
<td>vergelijkbaar met Voorkeursalternatief</td>
<td>vergelijkbaar met Voorkeursalternatief</td>
</tr>
<tr>
<td>Hoge druk alternatief</td>
<td>vergelijkbaar met Voorkeursalternatief</td>
<td>vergelijkbaar met Voorkeursalternatief</td>
<td>vergelijkbaar met Voorkeursalternatief</td>
<td>vergelijkbaar met Voorkeursalternatief</td>
</tr>
<tr>
<td>Variant grotere diameter</td>
<td>vergelijkbaar met Voorkeursalternatief</td>
<td>vergelijkbaar met Voorkeursalternatief</td>
<td>vergelijkbaar met Voorkeursalternatief</td>
<td>vergelijkbaar met Voorkeursalternatief</td>
</tr>
<tr>
<td>Variant andere tracé-delen</td>
<td>vergelijkbaar met Voorkeursalternatief</td>
<td>vergelijkbaar met Voorkeursalternatief</td>
<td>vergelijkbaar met Voorkeursalternatief</td>
<td>vergelijkbaar met Voorkeursalternatief</td>
</tr>
</tbody>
</table>

7.4.8. Energie en CO$_2$-balans

Voor het thema energie wordt inzicht gegeven in het energieverbruik. Omdat energieverbruik sterk gerelateerd is aan emissie van CO$_2$, vindt de effectbeoordeling plaats aan de hand van de CO$_2$-balans van de voorgenomen activiteit. De effecten voor dit milieuaspect zijn weergegeven in termen van vermeden CO$_2$-emissies.

Het overgrote deel van de emissie van CO$_2$ komt voor rekening van het elektriciteitsverbruik van de compressoren in de injectiefase. De CO$_2$-emissies in de aanlegfase, beëindigingsfase en de post-injectiefase, evenals de overige CO$_2$-emissies (zie het aspect ‘emissies’) vallen hierbij in het niet. In onderstaande tabel is een overzicht gegeven van de verhouding tussen de te injecteren en de te emitteren hoeveelheid CO$_2$ en daarmee van de vermeden CO$_2$-uitstoot.
De vermeden CO\textsubscript{2}-uitstoot is gemiddeld 0,35 Mton CO\textsubscript{2} per jaar. Over een injectieperiode van 28 jaar komt dit in totaal op bijna 10 Mton vermeden CO\textsubscript{2}-uitstoot. De gemiddelde CO\textsubscript{2}-efficiency van het project is ongeveer 95%. De 5% CO\textsubscript{2}- emissie is opgebouwd uit 4% CO\textsubscript{2}-emissie ten gevolge van het bestaande compressorstation Pernis en 1% ten gevolge van de nieuwe compressoren. De relatief grote bijdrage van de bestaande compressoren komt doordat deze compressoren energietechnisch de grootste compressieslag maken (van atmosferische druk naar 20-40 bar). Het aantal draaiuren van deze compressoren zal als gevolg van het project nagenoeg verdubbelen.

De opslag van CO\textsubscript{2} in de diepe ondergrond bij Barendrecht draagt bij aan de reductie van emissie van broeikasgassen. In onderstaande tabel 7.4.8.2 is de vermeden CO\textsubscript{2}-emissie weergegeven, in vergelijking tot de nationale emissie van broeikasgassen. Ten opzichte van de nationale emissie van 183 Mton CO\textsubscript{2}-equivalenten in 2004 [AMESCO, 2007], betreft een vermeden CO\textsubscript{2}-emissie van 0,35 Mton per jaar 0,19% van de reductie van broeikasgassen.

De Hoge druk alternatief scoort iets minder op het aspect energie, aangezien er aanvullend energie nodig is ter plaatse van de injectielocaties, waar gedurende een periode de aangeleverde druk van het CO\textsubscript{2} hoger is dan de injectiedruk. Het op temperatuur houden van het CO\textsubscript{2} vergt aanzienlijk meer energie. Gedurende 10 jaar is circa 3 keer zoveel energie nodig.
7.4.9. Verkeer en vervoer

Met betrekking tot het milieuaspect Verkeer en Vervoer zijn de verschillende toegangs wegen tot de locaties in beeld gebracht. Daarnaast is gekeken naar de aantallen te genereren verkeersbewegingen. Ten aanzien van de gegenereerde verkeersbewegingen is tenslotte ingegaan op de afgeleide effecten hiervan, te weten verkeersveiligheid en geluid- en trillingshinder.

Verkeersbewegingen

De meeste verkeersbewegingen zullen in de aanlegfase plaatsvinden. Gedurende deze fase vinden per dag gemiddeld 80 tot 100 verkeersbewegingen plaats van licht verkeer en gemiddeld 20 tot 25 bewegingen van zwaar verkeer. Deze aantallen vallen in het niet ten opzichte van het aantal verkeersbewegingen dat in de omgeving plaatsvindt.

Afgeleide effecten

In de aanlegfase is ten aanzien van de pijpleiding een licht negatief effect voorzien ten aanzien van afgeleide effecten van verkeersbewegingen. Dit heeft te maken met de belasting van lokale wegen voor de aanleg van het leidingtracé.

Tabel 7.4.9 Overzicht effecten verkeer en vervoer

<table>
<thead>
<tr>
<th>Verkeers en vervoer</th>
<th>Plot 16 (Pernis)</th>
<th>Pijpleidingtracé</th>
<th>Barendrecht</th>
<th>Barendrecht-Ziedewij</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verkeersbewegingen (aanlegfase)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Afgeleide effecten (aanlegfase)</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Calamiteiten</td>
<td>beperkt en lokaal verkeer bij calamiteiten reacties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basisalternatief</td>
<td>vergelijkbaar met Voorkeursalternatief</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoge druk alternatief</td>
<td>minder transport naar injectielocaties tijdens de aanlegfase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variant grotere diameter</td>
<td>vergelijkbaar met Voorkeursalternatief</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variant andere tracédelen</td>
<td>vergelijkbaar met Voorkeursalternatief</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.4.10. Externe veiligheid

De externe veiligheid is bepaald aan de hand van risicoberekeningen. Deze QRA (Quantitative Risk Assessment)berekeningen bepalen het plaatsgebonden risico en groepSRisico voor de verschillende onderdelen van het project. Bij de berekeningen is getoetst aan het vigerende beleid. De risicoscenario’s voor CO₂-transport en de mogelijke gevolgen van ongelukken zijn in overleg met het bevoegde gezag vastgesteld. Hierbij is uitgegaan van eerder een overschatting dan een onderschatting van gevolgen, zodat de berekeningsresultaten een maximaal denkbaar effect weergeven. De berekeningen geven de onderstaande resultaten.

Plaatsgebonden risico, geen (beperkt) kwetsbare objecten binnen berekende 10⁻⁶-contour

Voor het plaatsgebonden risico is de 10⁻⁶-contour bepalend. Deze is voor verschillende situaties berekend. Daarbij is getoetst of kwetsbare objecten dan wel beperkt kwetsbare objecten voorkomen binnen de berekende 10⁻⁶-contour. Uit de berekeningen blijkt dat dit voor alle berekeningen niet het geval is.
Plaatsgebonden risico, wel 10^{-6}-contour buiten locatie maar niet bij het transportleidingtracé

De 10^{-6}-contour komt buiten de grenzen van de locatie Plot 16 en beide injectielocaties. Bij de locatie Plot 16 is in de referentiesituatie al een 10^{-6}-contour berekend, welke enigszins groter wordt op het industrieterrein. Bij de locatie Barendrecht komt de 10^{-6}-contour buiten het terrein van de locatie, maar blijft wel binnen de oorspronkelijke gecombineerde locatie met de GBI. Voor de locatie Barendrecht-Ziedewij geldt dat een deel van de 10^{-6}-contour zich op het nagelegen weiland bevindt. Ter plaatse van de ondergrondse pijpleiding geeft de berekening aan dat geen 10^{-6}-contour voorkomt. Dit betekent dat de berekende risico’s kleiner zijn dan 10^{-6} per jaar.

Alleen groepsrisico bij leidingtunnels

Voor het Voorkeursalternatief geldt dat het groepsrisico bij het leidingtracé onder de oriënterende waarde blijft. Bij de overige onderdelen komt geen groepsrisico voor.

Alternatieven en varianten

Het hoge druk alternatief leidt tot een toename van de risicocontouren rondom de transportleiding.

Bij de variant waarbij de leiding in het gedeelte van de Buisleidingenstraat 28 inch diameter heeft in plaats van 14 inch, worden de berekende risicocontouren langs het leidingtracé iets groter. Bij de leidingtunnel onder het Beneluxplein is sprake van een groepsrisico, dat boven de oriënterende waarde uit komt.

<table>
<thead>
<tr>
<th>Tabel 7.4.10 Overzicht effecten externe veiligheid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Externe veiligheid</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Plaatsgebonden risico</td>
</tr>
<tr>
<td>Groepsrisico</td>
</tr>
<tr>
<td>Calamiteiten</td>
</tr>
<tr>
<td>Basisalternatief</td>
</tr>
<tr>
<td>Hoge druk alternatief</td>
</tr>
<tr>
<td>Variant grotere diameter</td>
</tr>
<tr>
<td>Variant andere tracédelementen</td>
</tr>
</tbody>
</table>

De belangrijkste effecten zijn:

- Het voorkeursalternatief verschilt niet van het basisalternatief.
- Het Hoge druk alternatief geeft een negatieve score dan het voorkeursalternatief. Er zijn indicatieve berekeningen uitgevoerd, die aangeven dat de risicocontouren bij de transportleiding groter zijn dan bij het Voorkeursalternatief.
- De 28" variant voor het leidingtracé geeft een negatieve score dan het voorkeursalternatief. Het groepsrisico overschrijdt de oriëntatiewaarde ter plaatse van de toekomstige leidingtunnel Beneluxplein.
Uit voorgaande blijkt het volgende:

- De uitvoering van dit initiatief zal vrijwel niet leiden tot tijdelijke of permanente gebruiksbeperkingen voor activiteiten in de omgeving. In het landelijk gebied in directe omgeving van de locatie Barendrecht-Ziedewij moet rekening worden gehouden met de berekende 10^{-6} risicocontour.
- Er worden geen veiligheidsknoelpunten en -aandachtspunten voorzien.
- De belangrijkste maatregelen die worden getroffen om de veiligheid van omwonenden te waarborgen bestaan uit het aanleggen van de transportleiding grotendeels in leidingstraten of nabij bestaande leidingen. Op de locaties is de ligging van installaties zodanig gekozen dat zo min mogelijke effect buiten de locatie ontstaat.
- Bij een lekkage kan CO$_2$ vrijkomen, maar in dermate kleine hoeveelheden dat een 'wolk' rond maaiveld niet voorkomt.

7.4.11. Afvalstoffen

Met betrekking tot het aspect afvalstoffen is gekeken naar het ontstaan en de verwerking van afvalstoffen. Tijdens de aanleg van de pijpleiding en de bouw van de installaties zal afval vrijkomen. Het gaat hier met name om puin en bouwafval dat moet worden afgevoerd. Tijdens de injectiefase komen op de verschillende locaties afvalstoffen vrij, met name afgewerkte olie. Ook deze afvalstroom zal worden afgevoerd en verwerkt. Na afronding van de injectiefase worden de installaties op de locaties Barendrecht en Barendrecht-Ziedewij afgebroken en afgevoerd. Het gaat voornamelijk om puin en bouwafval, huishoudelijk afval en oliehoudend afval. Zoveel mogelijk afvalstoffen zullen worden hergebruikt. De afvalstoffen die niet voor hergebruik in aanmerking komen zullen op erkende wijze worden verwerkt.

Naar verwachting zal de pijpleiding in de grond blijven liggen en wordt deze mogelijk in de toekomst ook gebruikt voor CO$_2$-transport. Bij de variant waarbij de pijpleiding een grotere diameter heeft, zijn meer hergebruikmogelijkheden. Dit scoort daarmee beter bij 'beperking afval' na beëindiging. Voor Plot 16 geldt dat ook deze na beëindiging mogelijk in gebruik blijft.

In de verschillende alternatieven komen afvalstoffen vrij, maar deze kunnen volgens bestaande methoden en zonder complicaties verwerkt worden. Dit wordt voor verschillende onderdelen als licht negatief beoordeeld.

<table>
<thead>
<tr>
<th>Tabel 7.4.11 Overzicht effecten afvalstoffen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afvalstoffen</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Aanlegfase</td>
</tr>
<tr>
<td>Injectiefase</td>
</tr>
<tr>
<td>Calamiteiten</td>
</tr>
<tr>
<td>Basissalternatief</td>
</tr>
<tr>
<td>Hoge druk alternatief</td>
</tr>
<tr>
<td>Variant grotere diameter</td>
</tr>
<tr>
<td>Variant andere tracéden</td>
</tr>
</tbody>
</table>
7.5 Samenvatting milieueffecten bij voorkeursalternatief

In hoofdstuk 7.4 zijn de belangrijkste effecten per milieuaspect benoemd. Onderstaand zijn de effecten in tabelvorm samengevat specifiek voor de aanlegfase en voor de injectiefase. Daarna wordt aandacht besteed aan de mogelijke effecten bij beëindiging van het project en in het geval van calamiteiten. Zowel voor de aanlegfase als voor de injectiefase zijn twee tabellen gegeven. De eerste tabel geeft een overzicht van de effecten van het Voorkeursalternatief, opgesplitst naar de vier hoofdonderdelen van het project: Plot 16, het pijpleidingtracé, locatie Barendrecht en locatie Barendrecht-Ziedewij. Een tweede tabel vergelijkt de effecten bij het Voorkeursalternatief met de effecten bij andere alternatieven en varianten.

7.5.1. Milieueffecten tijdens de aanlegfase

Tijdens de aanlegfase vinden aanpassingen plaats op de locaties en wordt de pijpleiding aangelegd. De belangrijkste effecten, zoals weergegeven in tabel 7.5.1, zijn:

- Een belangrijk aandachtspunt bij de aanleg van de pijpleiding vormt de archeologie. Het tracé kruist een aantal gebieden met hoge verwachtingen en naar het zich laat aanzien een daadwerkelijke archeologische locatie in de Buisleidingenstraat. Ook op de locatie Barendrecht-Ziedewij moet bij graafwerkzaamheden voor de fundering van de compressoren rekening gehouden worden met mogelijk archeologische waarden.

- Ter plaatse van de locaties is het milieueffect beperkt, doordat het bestaande en in gebruik zijnde locaties betreft, waarbij relatief beperkte aanpassingen worden uitgevoerd. Dit zal leiden tot geluidseffecten en verkeersbewegingen bij de locaties.

<table>
<thead>
<tr>
<th>Milieueaspect</th>
<th>Plot 16 Pernis</th>
<th>Pijpleiding Tracé</th>
<th>Locatie Barendrecht</th>
<th>Locatie Barendrecht-Ziedewij</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bodem</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Water</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ecologie</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Landschap</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Archeologie</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Geluid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lucht emissies</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Energie en CO$_2$-balans</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Verkeer</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Externe veiligheid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Afval</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
7.5.2. Milieueffecten tijdens de injectiefase

Tijdens de injectiefase is sprake van reguliere productieomstandigheden. Ter plaatse van de pijpleiding wordt naast regulier onderzoek en monitoring geen activiteiten voorzien. Alleen het milieueaspect externe veiligheid is hier in de injectiefase van belang. De installaties op de locaties zijn in bedrijf, met gevolgen voor energieverbruik, geluid, emissies en externe veiligheid. Daarnaast moet rekening gehouden worden met afval en verkeersbewegingen, evenals de zichtbaarheid van installaties in het landschap. De effecten op de milieueaspecten bodem, water, ecologie en archeologie zijn naar verwachting nihil.

Tabel 7.5.2 geeft de milieueffecten van het Voorkeursalternatief weer. Opvallend is de positieve score op het milieueaspect energie en CO₂-balans ter plaatse van de CO₂-bron nabij Plot 16 in Pernis. De overige licht negatieve scores geven weer dat de activiteiten met relatief weinig milieueffecten kunnen worden uitgevoerd.

<table>
<thead>
<tr>
<th>Milieuspect</th>
<th>Plot 16 Pernis</th>
<th>Pijpleiding Tracé</th>
<th>Locatie Barendrecht</th>
<th>Locatie Barendrecht-Ziedewij</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bodem</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Water</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ecologie</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Landschap</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Archeologie</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Geluid</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Lucht emissies</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Energie en CO₂-balans</td>
<td>++</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Verkeer</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Externe veiligheid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Afval</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

7.5.3. Overige milieueffecten

Beëindiging

Na beëindiging van de injectie zijn twee fasen te onderscheiden. Eerst vindt een periode van monitoring plaats, totdat in de ondergrond een stabiele eindsituatie is bereikt. Onder normale omstandigheden treden er geen effecten op in deze periode. Daarna worden de putten afgesloten, de injectielocaties ontruimd en het gebied teruggegeven aan de oorspronkelijke eigenaren. In deze fase vindt afvoer van vooral afvalstoffen plaats. Dit wordt lokaal als een negatief effect gescoord. Het is op voorhand niet mogelijk hergebruikmogelijkheden te benoemen, maar deze zullen zeker benut moeten worden.
Calamiteiten

In deelrapport 2 is per milieueaspect eveneens aandacht besteed aan de mogelijke gevolgen van calamiteiten. In hoofdstuk 5 is beschreven dat vooral het vrijkomen van CO\textsubscript{2} als calamiteit wordt beschouwd. Vanuit veiligheidsperspectief dient een CO\textsubscript{2}-wolk voorkomen te worden.

Indien CO\textsubscript{2} bij de pijpleiding of installaties vrijkomt, zal dit leiden tot verhoogde concentraties CO\textsubscript{2} in de lucht en eventueel in de directe omgeving van de pijpleiding. Bij lekkage uit het reservoir zal het CO\textsubscript{2} niet tot aan de grondwaterpakketten komen. Een lekkage via de put of langs de putwand zou CO\textsubscript{2} in de bodem en het grondwater kunnen brengen. Als belangrijkste milieueffecten zijn benoemd:

- Ecologische gevolgen van een calamiteit. Gezien de afstand tot het Natura 2000-gebied Oude Maas, wordt niet verwacht dat effecten een bedreiging vormen voor dit gebied.
- Luchtemissies, waarbij hoge concentraties in de dampkring komen. Dit heeft kortstondig een negatief effect, maar CO\textsubscript{2} mengt met lucht, zodat dit een tijdelijk effect is.
- Bodem en grondwater. Indien CO\textsubscript{2} in de bodem komt, kan het oplossen in grondwater. Gezien de trage bodemprocessen kan deze aantasting langer duren, vooral als er een constante toevoer is van CO\textsubscript{2}.
8. Milieueffecten ondergrondse CO₂-opslag

8.1 Inleiding

Demonstratieproject

Het injecteren van CO₂ in een leeggeproduceerd gasveld en voor lange termijn opslaan wordt vanuit de gas- en olie-industrie gezien als een nieuwe stap, maar een relatief kleine stap. Immers CO₂ wordt al geïnjecteerd in olievelden om de productie te verhogen, aardgas wordt al opgeslagen in lege velden en het afsluiten van een vol CO₂-veld vindt ook al plaats, indien een van nature met CO₂ gevuld veld wordt aangeboord. Dit betekent dat dit CO₂-opslagproject als een bijzonder project gezien wordt, maar slechts een kleine stap voorbij bestaande expertise. Binnen de olie- en gaswereld worden vaak nieuwe technieken ingevoerd gebaseerd op bestaande technieken, zodat het gehele project technisch als overzichtelijk wordt gezien, als een demonstratieproject.

Veiligheid als technische randvoorwaarde

In de randvoorwaarden voor het project is aangegeven dat het primair veilig moet plaats vinden. De nadruk ligt daarmee op de mogelijke risico’s en hoe deze kunnen worden beheerst. CO₂ op zich hoeft geen risico te vormen. Zoals beschreven in hoofdstuk 5 komt CO₂ van nature voor in de atmosfeer en heeft het vele positieve eigenschappen. Er zijn echter omstandigheden waarbij CO₂ een negatief effect kan hebben. Een negatief effect kan optreden als CO₂ een wolk, waarbij zuurstof wordt verdrongen of als CO₂ zich in een ruimte ophoopt.

Risico CO₂-lekkage

Binnen het project zal standaard geen CO₂ vrijkomen. Er is echter onderzoek gedaan, waar mogelijk in het systeem toch bij een ongeluk of falen van het systeem CO₂ kan vrijkomen en tot welke gevolgen dit leidt. In het bovengrondse deel, bij de compressoren en het leidingstelsel, geldt dat dit goed is onderzocht in de vorm van kwalitatieve risico analyses (QRA’s). Compressoren en CO₂-leidingen zijn wel aanwezig in Nederland, zodat dit geen nieuw aspect vormt (zie Externe veiligheid, hoofdstuk 11 in deelrapport 2). Daarnaast moet onderzocht worden of CO₂ uit de injectieput of uit het reservoir zou kunnen lekken. Hiertoe is onderzoek gedaan in het AMESCO rapport, waaruit blijkt dat in het algemeen de juiste omstandigheden bepalend zijn om risico’s te vermijden. Tevens is aangegeven dat per project dit locatiespecifiek moet worden uitgewerkt. Deze uitwerking vindt plaats in deelrapport 3 en wordt samengevat in dit hoofdstuk.

Onderstaand wordt ingegaan op de huidige stand der techniek. Daarna wordt de nieuwe stap toegelicht en tot slot de bevindingen van de risicoanalyse.
8.2 Huidige stand der techniek

Winning van gas

Het is in Nederland niet ongebruikelijk dat olie- en gaswinning plaatsvinden nabij bewoond gebied. Het betreft voornamelijk gaswinning, aangezien in Nederland olie en gas slechts op enkele plaatsen in winbare hoeveelheden voorkomen. Het gasveld Slochteren strekt zich uit onder een groot deel van de provincie Groningen, waar meerdere plaatsen voor komen voor de gasreservoirs. Dit geldt tevens voor de winbare reservoirs in West-Nederland.

Hoewel niet alle bewoners zich hiervan bewust zullen zijn, bevinden vele huizen, winkels, scholen en infrastructuur zich boven de gasvelden. Dit geldt eveneens voor de reservoirs bij de locaties Barendrecht en Barendrecht–Ziedewij. Met behulp van putten wordt het gas uit de reservoirs gewonnen, per pijpleiding getransporteerd naar gasbehandelingsinstallaties (GBI), zoals de GBI nabij de locatie Barendrecht, en na behandeling via een pijpleiding geleverd aan de Gasunie (Gasterra). Bij de aanleg van nieuwe infrastructuur of nieuwbouwwijken wordt vanuit de ruimtelijke ordening met bijzonder veel aspecten rekening gehouden, maar het is niet gebruikelijk de aanwezigheid van eventueel diepe winbare delfstoffen hierbij te betrekken. Hieruit kan worden afgeleid dat de aanwezigheid van aardgas in de diepe ondergrond en het winnen van aardgas met behulp van putten op een veilige manier kan plaatsvinden.

Veiligheid bij productie van gas

De olie- en gasindustrie is verantwoordelijk voor het veilig produceren vanuit de reservoirs. Hierop wordt toezicht gehouden door SodM (Staats toezicht op de Mijnen) namens het Ministerie van Economische Zaken. SodM beoordeelt de plannen voor een nieuwe winning, die zijn beschreven in het Winningsplan, de Wm-vergunning en bijvoorbeeld VG-documenten, op veiligheids- gezondheids- en milieubescherming. Hierin staat bijvoorbeeld aangegeven hoeveel putten worden geboord, welk materiaal wordt gebruikt en welke kwaliteit gas wordt verwacht. Tevens worden daarin de verwachtingen met betrekking tot bodemdaling beschreven. In de productiefase toetst SodM of de producent zich houdt aan de opgestelde voorschriften en in hoeverre de werkelijke bodemdaling overeenkomt. Incidenten die zich voordoen moeten worden gemeld bij SodM, met daarbij aangegeven hoe een incident is ontstaan en welke maatregelen hierna worden getroffen. Na afronding van een winning moet door de producent een Sluitingsplan worden opgesteld. Hierin staat aangegeven hoe het gasveld wordt afgesloten en hoe de locatie weer in oorspronkelijke staat wordt teruggebracht.

Afsluiten van putten

Over het algemeen worden de leeggeproduceerde reservoirs afgesloten. Het kan echter ook gebeuren dat een reservoir wordt aangeboord, waarin zich geen winbare methaan bevindt, maar in meerderheid andere gassen zoals stikstof of CO₂. Bij een boring bij Werkendam bleek van nature voornamelijk CO₂ in het reservoir voor te komen. De putten van dergelijke reservoirs worden volgens de nieuwste technieken veilig afgesloten. Als gevolg hiervan is er in Nederland ervaring opgedaan met het permanent afsluiten van reservoirs waarin gas onder hoge druk aanwezig is.
Voorbeelden van injectie

8.3 Nieuwe elementen in dit project

Terwijl voor buitenstaanders het idee dat CO₂ gaat worden opgeslagen in een leeggeproduced gasveld diep onder een woonwijk nog riskant overkomt, wordt dit vanuit de olie- en gasindustrie gezien als het toepassen van bekende en bestaande technieken in een iets andere vorm. De nadruk ligt voor de initiatiefnemer daarom vooral bij die componenten die afwijken van datgene wat in de dagelijkse praktijk standaard is.

Zo dient er in het bijzonder rekening gehouden te worden met de bijzondere eigenschappen van CO₂. Een deel van de gasvelden in Noord-Nederland bevat het zogenaamde zuurgas, wat sterk zwavelhoudend is en daardoor gevaarlijk. Bij deze velden worden extra veiligheidsmaatregelen getroffen om te zorgen dat de productie veilig plaatsvindt. In het verlengde hiervan zal bijzondere aandacht worden besteed aan het werken en omgaan met CO₂.

In het verlengde van de bijzondere eigenschappen van CO₂ vormt de monitoring een nieuwe component aan dit project. De intensiviteit van monitoring, het vaststellen van hoeveelheden die als bewezen in het reservoir voorkomen en de vraag hoe lang monitoring nog zinvol is, hebben hierdoor speciaal de aandacht.

Het toepassen van bestaande technieken op een nieuwe situatie vindt veelvuldig plaats in de olie- en gasindustrie. Er vinden nieuwe ontwikkelingen plaats, waardoor steeds meer mogelijkheden voor winning ontstaan. Daarmee is er ervaring met vernieuwende projecten. Tevens is er een uitgebreid internationaal netwerk waarin alle theoretische kennis en praktische ervaringen worden uitgewisseld. Hierdoor ontstaat het beeld wat mogelijk is op het gebied van CCS.

BREF-toets opslag

Hoewel deze BREF de opslag van CO\(_2\) en ook de opslag in gedepleteerde gasvelden niet kent, kan wellicht een parallel getrokken worden met de daarin benoemde mijnbouw cavernes in met name zoutlagen. Lekkage uit dergelijke cavernes wordt door de hoge intrinsieke veiligheid van de ondergrond als niet significant beoordeeld. Wel wordt vanuit risicobeheersing een aantal beheersmaatregelen voorgesteld (onder meer in paragrafen 4.1.4, 4.1.15. en hoofdstuk 5 van de BREF), waarvan de relevante maatregelen te herkennen zijn in het onderhavige MER:

- Risicomanagementsysteem middels inventarisatie, evaluatie en beheersing van de risico’s;
- Monitoring van de opslag;
- De intrinsieke veiligheid van de ondergrond;
- Beveiliging van de opslag tegen onder meer overdrukken.

8.4 Risicoanalyse

Inleiding

Bovenstaande schets geeft weer hoe de huidige stand der techniek is en welke vernieuwing het injecteren van CO\(_2\) in leeggeproduceerde gasvelden vormt. Er kunnen echter dingen mis gaan. De vraag dringt zich op, wat gebeurt er als er iets mis gaat? Hoe groot zijn de gevolgen en wat kan er worden gedaan om de gevolgen zo gering mogelijk te maken?

Er is een uitgebreide risicoanalyse uitgevoerd, waarbij alle mogelijk ongewenste situaties in beeld zijn gebracht. Dit heeft vooral betrekking op mogelijke lekkage van CO\(_2\). Uit de beschrijving van de eigenschappen van CO\(_2\), blijkt al dat CO\(_2\) een risico kan vormen als de concentratie in de lucht 5% of meer bedraagt. De risicoanalyse richt zich daarmee op omstandigheden waarbij dit zou kunnen optreden.

Het derde rapport van dit MER richt zich voor een belangrijk deel op de risicoanalyse. Onderdeel hiervan is een scenariobenadering, waarbij vier mogelijke lekkagepaden worden uitgewerkt. Nadat is geconstateerd dat de kans dat CO\(_2\) via deze routes ontsnapt minimaal is en het zelfs bij lekkage slechts een zeer geringe hoeveelheid betreft, zijn de scenario’s uitgewerkt voor het geval toch een grote hoeveelheid CO\(_2\) via de potentiële lekpaden het reservoir zou verlaten.

Scenario deklaaglekkage (caprock)

Lekkage van CO\(_2\) vanuit het reservoir door de afdekende laag zou kunnen ontstaan doordat chemische reacties leiden tot hogere permeabiliteit (waardoor CO\(_2\) kan gaan stromen door de afdekkende laag) of doordat verhoogde (mechanische) druk leidt tot scheurvorming in de afdekkende laag.
Uit TNO onderzoek blijkt dat het CO\textsubscript{2} en de afdekende laag nauwelijks chemische reacties zullen aangaan, zodat de toename van permeabiliteit niet verwacht wordt. Er zouden juist effecten op kunnen treden waardoor de permeabiliteit kleiner wordt. Ten aanzien van de mechanische druk geldt dat tijdens het injectieproces de drukopbouw in het reservoir steeds wordt gemonitoord om er voor te zorgen dat de druk onder de oorspronkelijke van het reservoir blijft. Indien de druk te hoog wordt, is het mogelijk CO\textsubscript{2} gedoseerd uit het reservoir te halen. In dat geval treedt alsnog emissie van CO\textsubscript{2} op.

Het scenario gaat ervan uit dat ondanks bovenstaande argumenten toch CO\textsubscript{2} in de laag boven de eerste afdekking terechtkomt. TNO heeft een model opgesteld om de verplaatsing van het CO\textsubscript{2} te modelleren. In het model is aangenomen dat CO\textsubscript{2} vanuit het Barendrecht-Ziedewij reservoir door de kleinsteenlaag van de Altena groep terechtkomt in de Schieland/Delfland groep. Indien zich grote hoeveelheden CO\textsubscript{2} voordoen, kunnen deze opwaarts migreren tot aan de kleilagen van de Rijnland groep. Hier vandaan zal het CO\textsubscript{2} zich langs de onderkant van de kleilaag bewegen. De kleilagen zijn in het model als nagenoeg ondoorzichtig aangenomen. In kleinere hoeveelheden, of na verloop van tijd, zal het superkritische CO\textsubscript{2} oplossen in de waterlaag of zich capillair binden. De berekeningen geven aan dat het CO\textsubscript{2} de biosfeer of in het verlengde hiervan het maaiveld niet bereikt.

Scenario overstroomlekkage (spill point)

Indien het CO\textsubscript{2} buiten het oorspronkelijke reservoir komt, door bijvoorbeeld zijdelings weg te stromen, kan een situatie ontstaan waarbij CO\textsubscript{2} langs de afdekking terechtkomt. Dit kan optreden zodra de druk in het reservoir te hoog wordt en meer ruimte door het CO\textsubscript{2} wordt ingenomen dan oorspronkelijk door het aardgas. Te hoge druk kan ontstaan, doordat er teveel CO\textsubscript{2} in het reservoir wordt gebracht of doordat chemische reacties van het CO\textsubscript{2} met het reservoirgesteente leiden tot aantasting van de oorspronkelijke eigenschappen van het reservoirgesteente.

Het chemisch onderzoek van TNO wijst uit dat het reservoirgesteente niet of nauwelijks wordt aangetast, mede doordat er relatief weinig water in het reservoir en in het CO\textsubscript{2} aanwezig is. Stromingsberekeningen laten zien hoe het CO\textsubscript{2} door het reservoir zal stromen. Dit kan mede bij de monitoringputten worden getoetst tijdens de injectiefase.

In het scenario is onderzocht wat er gebeurt als het CO\textsubscript{2} toch buiten het reservoir komt. Dit is vergelijkbaar met de berekeningen zoals uitgevoerd voor het scenario met lekkage door de deklaag.

Scenario breukzonelekkage

Bij het reservoir van Barendrecht (BRT) komt een breukzone voor, terwijl er meerdere voorkomen bij het reservoir van Barendrecht-Ziedewij (BRTZ). Bij het injetteren van CO\textsubscript{2} in het reservoir komt er opnieuw druk te staan op de breukzones. Dit zou kunnen leiden tot bodembeweging en lekkage door de breukzone.
De mechanische integriteit van de breukzones in BRT en BRTZ is onderzocht door TNO. Hierbij is gekeken naar de gehele cyclus van de extractie van aardgas en olie (blow-down) tot het injecteren van CO$_2$ in hetzelfde reservoir (re-pressurisation). Een analyse van de integriteit van de breukzones in BRT na de volledige cyclus van ‘blow-down en re-pressurisation’ was niet nodig, omdat hierbij gebruik gemaakt kon worden van een eerdere studie voor het De Lier reservoir. In deze eerdere studie aan het De Lier reservoir is geconcludeerd dat na de volledige cyclus van blow-down en re-pressurisation de kans op re-activatie van de breuken laag is. Vanwege significante overeenkomsten met BRTZ (de beide reservoirs bevinden zich in en om dezelfde geologische structuren) geeft TNO aan dat deze conclusie kan worden geëxtrapoleerd naar BRTZ.

Scenario putlekkage

Voor de eerste drie scenario’s geldt dat het reservoir zich bevindt in een omgeving met hoge druk. De omgevingsdruk is vergelijkbaar met de oorspronkelijke druk in het gasveld. Als gevolg hiervan is het onwaarschijnlijk dat CO$_2$ uit het reservoir ontsnapt, zolang de initiële druk niet wordt overstegen. En dat is een belangrijke randvoorwaarde. Voor ontsnapting van CO$_2$ via de put geldt dit niet aangezien rondom de put een lagere druk zal heersen dan in de omgeving van de ondergrond.

Het afsluitende vermogen van injectie- en monitoringsputten kan door drie mogelijk categorieën van oorzaken in het geding komen (uitgewerkt in het AMESCO rapport). Dit geldt zowel tijdens de injectiefase als na de injectiefase, wanneer de putten zijn verlaten en voorgoed afgesloten:

1. **Constructieve eigenschappen**
 Door bijvoorbeeld slecht vakwerk en materiaalgebruik kan het risico op lekkage vergroot worden.

2. **Mechanische verwering**
 Normaal gesproken bestaat de put uit staal en het omhulsel en de afdichting of plug bestaan uit cement. Aantasting van het cement en staal van de put door drukverschillen en temperatuurverschillen die kunnen ontstaan in het reservoir, zouden mogelijk tot kwaliteitsvermindering kunnen leiden. Tevens kunnen processen als co-productie van zand of zure vloeistoffen bijdragen aan slijtage van de materialen, waardoor het risico op CO$_2$-lekkage eveneens verhoogd kan worden.

3. **Chemische verwering**
 Het belangrijkste aspect van chemische verwering wordt veroorzaakt door de gecombineerde aanwezigheid van CO$_2$ en water in een reservoir met hoge druk en temperaturen. Puur CO$_2$ zal het staal en cement van de put niet aantasten, maar zodra CO$_2$ oplost in water, leidt dit tot een lage pH en zure omstandigheden. De ontstane zure oplossing kan wel invloed hebben op het staal (corrosie) en cement (verwering) van de put. Dit kan leiden tot lekkage vanuit het opslagreservoir via de put (tussen binnenste en buitenste verbuizing) of langs de cementlaag om de buitenste verbuizing naar de bovenliggende lagen en/of naar de atmosfeer.
TNO concludeert dat verwering van pluggen een te langzaam proces is om een reëel risico te vormen, behalve als er al breuken of scheuren in cement aanwezig zijn. Als er scheurtjes of andere onvolkomenheden in het cement aanwezig zijn, zal dit de diffusiesnelheid sterk verhogen (de scheurtjes zullen in de loop der tijd steeds groter worden door chemische degradatie). Hieruit blijkt dat de kwaliteit van het cement in en om de put en van de plug uiterst belangrijk is. TNO benadrukt het belang van een goede afsluiting van de put wanneer deze verlaten wordt en geeft een aantal adviezen:

- Bij het permanent verlaten van putten in CO\textsubscript{2}-opslagprojecten dient een pannenkoekplug geplaatst te worden.
- Dit is helaas niet meer mogelijk voor put BRT-2A, die reeds is afgesloten conform de conventionele richtlijnen. Omdat deze plug niet specifiek voor CO\textsubscript{2}-opslag is geplaatst, vormt deze put een extra risico. Geadviseerd wordt om te monitoren op CO\textsubscript{2}-lekkage ter hoogte van de vertakking van de put in de Kalk Groep.
- Tijdens de injectiefase zijn injectieput en monitoringputten niet afgesloten, wat extra risico meebrengt. Het primaire cementomhulsel dient van uitstekende kwaliteit te zijn. Monitoring moet plaatsvinden van een eventuele CO\textsubscript{2}-lekkage achter de behuizing ter hoogte van de afdekende bovenlaag van het reservoir.
8.5 Conclusies

Om toekomstig gebruik van de ondergrond voor andere functies mogelijk te maken, mag er geen onherstelbare schade aan de ondergrond worden toegebracht. Bij een regulier verloop tijdens de injectiefase en gedurende de permanente opslag, zal het opslaan van CO\(_2\) in de leeggeproduceerde gasreservoirs niet leiden tot aantasting van de ondergrond.

Mogelijk ongewenste situaties, zoals bodemtrillingen en het weglekken van CO\(_2\) uit het reservoir, kunnen wel leiden tot aantasting van de ondergrond. De mate waarin aantasting plaatsvindt, is echter beperkt, doordat trillingen vergelijkbaar zijn met trillingen die bij andere geaccepteerde vormen van delfstofwinning optreden en de mogelijke lekkage van CO\(_2\) tot geringe hoeveelheden beperkt blijft, waaruit geen werkelijke verslechtering van het ondergronds milieu optreedt.

Uit de risicoanalyse en scenariobenadering blijkt dat de meeste aandacht dient uit te gaan naar de integriteit van de put. Indien hier iets mis gaat, kan dat leiden tot uitstoot van CO\(_2\). Tijdens de injectiefase dient het risico van een blow-out bewaakt te worden. Op langere termijn moet worden gewaarborgd dat de putwanden niet worden aangetast.

<table>
<thead>
<tr>
<th>Tabel 8.1 Overzicht milieuscore ondergrondse opslag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score Voorkeurs alternaatief</td>
</tr>
<tr>
<td>bodembeweging ondergrond</td>
</tr>
<tr>
<td>lekkage naar biosfeer</td>
</tr>
<tr>
<td>invloed op andere functies</td>
</tr>
<tr>
<td>stabiliteit ondergrond</td>
</tr>
</tbody>
</table>
9. Vergelijking van alternatieven

9.1 Inleiding

In dit hoofdstuk wordt een overzicht gegeven van de belangrijkste milieueffecten voor het voorkeursalternatief zowel voor de bovengrondse als ondergrondse effecten. Het Voorkeursalternatief wordt vergeleken met de andere alternatieven en de varianten.

9.2 Afweging alternatieven en varianten

In de onderstaande tabel wordt een vergelijking gemaakt tussen de verschillende alternatieven en varianten. In hoofdstuk 7 en 8 zijn de resultaten al samenvattend weergegeven. In dit hoofdstuk worden de onderscheidende aspecten samengebracht. Dit leidt tot een totaalloosoverzicht in tabel 9.1.

Aanlegfase

Het voorkeursalternatief wordt in tabel 9.1 vergeleken met de alternatieven en varianten. Tabel 7.5.1 geeft de effecten van het Voorkeursalternatief weer ten opzichte van de referentiesituatie. In tabel 9.1 wordt de nadruk gelegd op de verschillen tussen het Voorkeursalternatief en de andere alternatieven en varianten. Indien in de tabel een score van '0' wordt gegeven, betekent het dat het effect vergelijkbaar is met het effect in van het Voorkeursalternatief. Indien een '-' wordt gescoord, geeft dit aan dat lokaal meer milieueffecten optreden.

Tabel 9.1 Overzicht milieuscore alternatieven ten opzichte van het voorkeursalternatief tijdens aanlegfase

<table>
<thead>
<tr>
<th>Milieuspect</th>
<th>Voorkeurs alternatief</th>
<th>Basis Alternatief</th>
<th>Hoge Druk Alternatief</th>
<th>Variant diameter</th>
<th>Variant tracédelen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bodem</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Water</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ecologie</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Landschap</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Archeologie</td>
<td>-/-/-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Geluid</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lucht emissies</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Energie en CO₂-balans</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Verkeer</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Externe veiligheid</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Afval</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

In de tabel worden de volgende verschillen zichtbaar:

- Het voorkeursalternatief onderscheidt zich in de aanlegfase van het Basisalternatief door de aanvullende maatregelen om bemalingswater te zuiveren, de ecologische bescherming door bijvoorbeeld rekening te houden met het broedseizoen en door archeologisch kansrijke gebieden te ontzien door het uitvoeren van gestuurde boringen. Dit uit zich in bovenstaande tabel door de drie negatieve scores in de kolom Basisalternatief.
Het Hoge Druk Alternatief leidt in de aanlegfase tot wat meer activiteiten ter plaatse van Plot 16 en wat minder bij de twee injectielocaties. Netto kan dit op het gebied van geluid en verkeer als positief gezien worden, door de ligging van Plot 16 in een industriegebied.

Indien een pijpleiding met een grotere diameter wordt aangelegd, zal meer grondverzet nodig zijn, wat eveneens tot meer bemaling zal leiden. Op de aspecten bodem en water scoort deze variant daardoor lokaal wat lager.

De variant in de omgeving van de locatie Barendrecht-Ziedewij kan leiden tot belemmeringen voor een particulier perceel.

Injectiefase

In tabel 9.2 worden voor de injectiefase de verschillen weergegeven tussen de milieueffecten in het Voorkeursalternatief en de andere alternatieven en varianten, vergelijkbaar met tabel 9.1 voor de aanlegfase.

<table>
<thead>
<tr>
<th>Milieusaspect</th>
<th>Voorkeursalternatief</th>
<th>BasisAlternatief</th>
<th>Hoge Druk Alternatief</th>
<th>Variant diameter</th>
<th>Variant tracédeelen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bodem</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Water</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ecologie</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Landschap</td>
<td>-/-</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Archeologie</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Geluid</td>
<td>-/-</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lucht emissies</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Energie en CO₂-balans</td>
<td>+/ +</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Verkeer</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Externe veiligheid</td>
<td>-/-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Afval</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

In de tabel worden de volgende verschillen zichtbaar:

- Het Basisalternatief onderscheidt zich niet wezenlijk van het Voorkeursalternatief. De verschillen hebben voornamelijk betrekking op de aanlegfase en de injectiestrategie en monitoring van de ondergrond. Dit komt in hoofdstuk 8 aan bod.

- Het Hoge Druk Alternatief scoort minder door de benodigde extra energie voor het afkoelen van CO₂ voor injectie. Verder leidt dit alternatief tot grotere risicocontouren rondom de pijpleiding en daarmee een negatieve score ten opzichte van het Voorkeursalternatief. Het alternatief onderscheidt zich van het Voorkeursalternatief door minder geluid bij de injectielocaties, maar iets meer geluid bij Plot 16. Dit wordt gezien als een lager netto milieueffect, dus een plus-score ten opzichte van het Voorkeursalternatief. De landschapverstoring op de injectielocatie Barendrecht-Ziedewij is lokaal minder, dus geeft dit relatief een positieve score.

- De variant met een grotere diameter leidt lokaal tot iets grotere effecten op het gebied van externe veiligheid.

- De variant met aangepaste tracédeelen onderscheidt zich niet van het Voorkeursalternatief.
Beeëindiging

De variant met grotere diameter is hier onderscheidend op het milieuaspect afval. Doordat de grotere leiding kan worden hergebruikt voor andere CO₂-transportprojecten, is de score op het aspect afval gunstiger dan het Voorkeursalternatief. De alternatieveen en de variant tracédelen zijn hier niet onderscheidend, zoals onderstaand weergegeven in tabel 9.3.

<table>
<thead>
<tr>
<th>Milieuscore alternatieven ten opzichte van het voorkeursalternatief tijdens beëindigingfase</th>
<th>Score</th>
<th>Verschil ten opzichte van Voorkeursalternatief</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voorkeurs alternatief</td>
<td>Basis Alternatief</td>
<td>Hoge Druk Alternatief</td>
</tr>
<tr>
<td>Beeëindiging</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

Calamiteiten

In het Voorkeursalternatief zijn preventieve maatregelen waaronder monitoring verder doorgevoerd ten opzichte van het Basisalternatief. Het Voorkeursalternatief scoort daardoor beter dan het Basisalternatief. Bij het Hoge Druk Alternatief zal bij een calamiteit meer CO₂ vrijkomen, evenals bij een pijpleiding met grotere diameter, zodat hier in tabel 9.4 eveneens een negatieve score is opgenomen, ten opzichte van het Voorkeursalternatief.

<table>
<thead>
<tr>
<th>Milieuscore alternatieven ten opzichte van het voorkeursalternatief in het geval van een calamiteit</th>
<th>Score</th>
<th>Verschil ten opzichte van Voorkeursalternatief</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voorkeurs alternatief</td>
<td>Basis Alternatief</td>
<td>Hoge Druk Alternatief</td>
</tr>
<tr>
<td>Calamiteit</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Ondergrond

Voor de ondergrond heeft het Voorkeursalternatief alleen een beperkt negatieve score ten aanzien van gebruiksfuncties. Ten aanzien van een veilige opslag in de ondergrond scoren alle alternatieven even goed. In het voorkeursalternatief is aanvullende monitoring toegevoegd. Het Voorkeursalternatief heeft meer en betere monitoringaspecten ten opzichte van het Basisalternatief, maar dit leidt niet tot een aangepaste score.

<table>
<thead>
<tr>
<th>Milieuscore alternatieven ondergrondse opslag</th>
<th>Score Voorkeurs alternatief</th>
<th>Verschil ten opzichte van Voorkeursalternatief</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voorkeurs alternatief</td>
<td>Basis Alternatief</td>
<td>Hoge Druk Alternatief</td>
</tr>
<tr>
<td>bodembeweging ondergrond</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lekkage naar biosfeer</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>invloed op andere functies</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>stabiliteit ondergrond</td>
<td>+</td>
<td>0</td>
</tr>
</tbody>
</table>
9.3 Meest milieuvriendelijk alternatief (MMA)

Het Meeste Milieu Vriendelijk Alternatief (MMA) kan na de toetsing van alternatieven en varianten worden samengesteld uit die onderdelen die voor het milieu het beste scoren. Daarnaast worden mogelijke mitigerende maatregelen toegevoegd om de uiteindelijke negatieve scores voor het milieu zoveel mogelijk te beperken.

Samenstelling MMA

Het aantal alternatieven en varianten voor dit project is beperkt, doordat de technische uitwerking gericht is op optimalisatie van het ontwerp. Tijdens het samenstellen van het voorkeursalternatief zijn op meerdere onderdelen aanpassingen doorgevoerd, ten opzichte van het Basisalternatief, met als doel een reductie van milieueffecten. Dit zijn maatregelen, waarvoor geldt dat binnen redelijke kosten een significante verbetering realiserbaar is. Hierdoor komt het Voorkeursalternatief overeen met het MMA.

Mitigerende maatregelen

De bovenstaande tabellen laten zien, dat relatief weinig effecten optreden. Uit de beschrijving van de milieueffecten kunnen de volgende mitigerende maatregelen nog worden benoemd:

- Landschappelijke inpassing ter plaatse van de locatie Barendrecht-Ziedewij.
- Aanpassing bij de positionering van installaties op de locatie Barendrecht-Ziedewij, indien bij proefboring blijkt dat ter plaatse mogelijk archeologische resten worden gevonden.
10. De m.e.r.-procedure

10.1 Inleiding
Dit hoofdstuk geeft een beschrijving van de procedure voor de milieueffectrapportage (m.e.r.). Hierbij wordt ingegaan op de te nemen besluiten en betrokken partijen.

10.2 Doelstellingen van de m.e.r.-procedure algemeen
Het MER beoogt de effecten op het milieu van de voorgenomen activiteit en van de verschillende alternatieven in beeld te brengen, zodat het milieusapect een volwaardige plaats krijgt in de besluitvorming. Dit doel wordt bereikt door het verzamelen van milieu-informatie, die gerelateerd is aan het initiatief. De milieu-informatie wordt vastgelegd in het milieueffectrapport (MER). In het MER wordt tevens aangegeven of en welke mogelijke alternatieven er zijn. In ieder geval dienen het zogenaamde Nulalternatief, het Voorkeursalternatief en een Meest Milieuvriendelijk Alternatief te worden beschreven. Het Nulalternatief is in dit geval de (referentie)situatie waarin geen CO\textsubscript{2}-opslag plaatsvindt. Het Voorkeursalternatief is de wijze waarop de initiatiefnemers de voorgenomen activiteit wil aanleggen, gebruiken en beheren. Het Meest Milieuvriendelijke Alternatief beschrijft het alternatief, waarbij de beste bestaande mogelijkheden ter bescherming van het milieu worden toegepast.

10.2.1. M.e.r.-procedure
In de m.e.r.-procedure zijn verschillende fasen te onderscheiden. Een plan-MER kent niet al deze fasen (bijvoorbeeld geen verplichte startnotitie of richtlijnen en advies daarover door de Commissie), maar kan aanhaken bij het meer stringente besluit-MER:

1. Voorfase
2. Opstellen van richtlijnen
3. Opstellen van het milieu-effectrapport
4. Aanvaardbaarheidsbeoordeling
5. Advisering, inspraak en toetsing
6. Besluitvorming
7. Evaluatie

Voorfase
De m.e.r.-procedure is van start gegaan met het indienen van de startnotitie bij de provincie Zuid-Holland, het bevoegd gezag voor deze MER, medio december 2007.
Opstellen richtlijnen
Na inspraak heeft de onafhankelijke Commissie m.e.r. in maart 2008 een advies opgesteld voor de inhoud van de richtlijnen. Aansluitend heeft het bevoegd gezag in april 2008 de richtlijnen voor de inhoud van het MER definitief vastgesteld. Deze ‘Richtlijnen milieu-effectrapport CO\textsubscript{2}-opslag Barendrecht’ geven aan welke onderwerpen in het milieu-effectonderzoek moeten worden onderzocht. Voorliggend MER is aan de hand van deze richtlijnen opgesteld.

Opstellen van het MER
Het MER is door Royal Haskoning opgesteld. Ter ondersteuning zijn verschillende adviesbureaus ingeschakeld.

Aanvaardbaarheidsbeoordeling
Als het MER door het bevoegd gezag getoetst is aan de richtlijnen en wordt aanvaard, wordt het MER openbaar gemaakt door het bevoegd gezag. Het MER komt dan zes weken ter inzage te liggen.

Advisering, inspraak en toetsing
Na de publicatie van het MER kunnen de wettelijke adviseurs hun advies over het MER. Ook andere insprekers, personen of organisaties, kunnen hun mening over het MER uitbrengen. Eventueel is er een openbare zitting waar inspraak mogelijk is. De Commissie voor de milieu-effectrapportage toetst het MER op volledigheid en juistheid aan de hand van de wet en de richtlijnen van het bevoegd gezag. De bij de inspraak naar voren gekomen opmerkingen en de adviezen van de wetenschappelijke adviseurs worden meegenomen bij de toetsing door de Commissie m.e.r. De Commissie m.e.r. moet binnen vijf weken na het verstrijken van de inspraaktermijn of na de eventuele openbare zitting (als die na de inspraakperiode plaatsvindt) haar advies uitbrengen aan het bevoegd gezag.

Besluitvorming
Na de inspraak en advisering zal de besluitvorming volgen. Het kan zijn dat het bevoegd gezag geen besluit neemt omdat de omstandigheden, waarvan bij het maken van het MER is uitgegaan, te sterk veranderd zijn. Dan kan ervoor gekozen worden het MER eerst aan te passen naar de gewijzigde omstandigheden.

Bij het nemen van een besluit moet het bevoegd gezag een aantal zaken aangeven:

- Op welke wijze rekening is gehouden met het milieu.
- Welke overwegingen zijn gemaakt met betrekking tot de alternatieven.
- Welke inspraakresultaten, wettelijke advisering en toetsingsadviezen een rol hebben gespeeld bij het nemen van een besluit.
Evaluatie
Tijdens of na de uitvoering van de voorgenomen activiteit wordt een evaluatie uitgevoerd, waarbij
gekeken wordt naar de voorspelde effecten en de werkelijke effecten van de ingreep op de omgeving.
Het moment van de evaluatie wordt al aangegeven bij het genomen besluit. Mochten de effecten
groter zijn dan verwacht, dan moet het bevoegd gezag aanvullende maatregelen treffen.

10.2.2. Betrokkenen
Over het algemeen zijn er bij een m.e.r.-procedure verscheidene betrokkenen. Standaard is een
aantal betrokkenen benoemd: initiatiefnemers, bevoegd gezag, wettelijke adviseurs en Commissie
voor de milieu-effectrapportage. Afhankelijk van in welke fase de m.e.r.-procedure zich bevindt, zijn
verschillende actoren betrokken.

- De initiatiefnemer is een natuurlijk persoon, dan wel een privaat- of publiekrechtelijk rechtspersoon,
die een bepaalde activiteit wil ondernemen en daarover een besluit vraagt.
- Het bevoegd gezag is het overheidsorgaan dat bevoegd is een besluit te nemen over de voorgenomen
activiteit van de initiatiefnemer.
- Wettelijke adviseurs: In de m.e.r.-regeling zijn de volgende wettelijke adviseurs aangewezen: de
(regionale) inspecteur milieuhygiëne (Ministerie VROM) en de directeur Landbouw, natuur en
openluchtrecreatie (Ministerie LNV) en adviseurs in het kader van het besluit waarvoor het MER wordt
gemaakt. In dit geval betreft het:
 - VROM-inspectie.
 - Gedeputeerde Staten van de provincies waar de inrichtingen in liggen.
 - Burgemeester en wethouders van de gemeenten waar de inrichtingen in liggen.
 - Inspecteur generaal der mijnen.
- Per m.e.r.-procedure wordt er een werkgroep samengesteld uit adviseurs van de Commissie voor de
milieueffectrapportage. Deze werkgroep adviseert het bevoegd gezag, over de richtlijnen voor de
inhoud van het MER en over de volledigheid, juistheid en kwaliteit van het MER.
- Belanghebbenden, zoals de omwonenden, worden geïnformeerd en kunnen reageren op zowel de
startnotitie als het MER.

10.3 Bevoegde instanties en besluitvormingsprocedures
De procedure van de milieueffectrapportage is gekoppeld aan de besluitvormingsprocedures (op
project- of planniveau, waar men mee te maken krijgt. De m.e.r. wordt gekoppeld aan de
besluitvormingsprocedure voor vergunningverlening van de Wet milieubeheer en eventueel de
relevante planvorming daarvoor (in casu bestemmingsplannen). Het MER is opgesteld voor de
besluitvorming over de vergunningverlening voor het in gebruik nemen van het reservoir Barendrecht
deel 1) en het reservoir Barendrecht-Ziedewij (deel 2) en de bestemming van locaties en leidingtracé.
Bevoegd gezag voor Wet Milieubeheer

CO₂-opslag is een mijnbouwactiviteit waarvoor het Ministerie van Economische Zaken bevoegd gezag is. Voor het bergen van afvalstoffen in de ondergrond is echter een uitzondering gemaakt. Doordat CO₂ nog wordt gezien als een (niet-gevaarlijke) afvalstof, geldt ten aanzien van de Wet Milieubeheer dat voor de ondergrondse opslag het bevoegd gezag de provincie is, in dit geval de provincie Zuid-Holland (formeel de Gedeputeerde Staten van Zuid-Holland). Voor de bovengrondse inrichting blijft de minister van Economische Zaken het bevoegd gezag.

Naast de Wet milieubeheer zijn verschillende andere wettelijke besluiten van toepassing, waarvoor andere overheden als bevoegd gezag optreden. De provincie Zuid-Holland heeft het m.e.r.-proces gecoördineerd.

In figuur 10.1 is een indicatief schema weergegeven van beide trajecten met bijbehorende wettelijk voorgeschreven handelingen (kader met doorgetrokken lijn) en informele handelingen en procedurestappen (kader met stippellijn). Bepaalde milieueffectrapportage- en besluitvormingsstappen zijn wettelijk aan elkaar gekoppeld. Dit is cursief en vet aangegeven in het schema. Daarnaast is het MER opgesteld ten behoeve van de noodzakelijke wijzigingen van diverse bestemmingsplannen.

Figuur 10.1 Overzicht koppeling m.e.r.-procedure en Wet milieubeheer.
Een aantal besluiten (circa 20) dat de initiatiefnemer het recht geeft de voorgenomen activiteit uit te voeren, moet nog genomen worden. In tabel 10.2 is weergegeven om welke besluiten het hier in elk geval gaat. Binnen welke wettelijke kaders deze besluiten genomen moeten worden en bij welke bevoegde instanties hiervoor een aanvraag gedaan moet worden, is af te lezen uit de tabel.

Teneinde de opslag van CO₂ in Barendrecht te kunnen realiseren, is een aantal instemmingen nodig van verschillende bevoegde instanties. Onderstaand zijn deze weergegeven. Het betreft met name de besluiten nodig voor de eerste fase, dat wil zeggen het geschikt maken van de locatie Barendrecht voor CO₂-opslag. Maar in zoverre het juridisch en praktisch mogelijk is, worden ook reeds de besluiten voor de tweede fase aangevraagd.

<table>
<thead>
<tr>
<th>Besluit</th>
<th>Wettelijk kader</th>
<th>Bevoegd gezag</th>
<th>Globale inhoud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oprichtingsvergunning</td>
<td>Wet milieubeheer / Activiteiten besluit bijlage 1 (type C</td>
<td>Provincie voor ondergrondse deel en EZ voor bovengrond</td>
<td>Het oprichten en in bedrijf hebben van een inrichting voor het injecteren van de (afval)stof CO₂.</td>
</tr>
<tr>
<td>Ontheffing Lozingenbesluit</td>
<td>Artikel 25a Lozingenbesluit bodembescherming</td>
<td>Provincie</td>
<td>Ontheffing voor het in de bodem brengen van (afval)stoffen.</td>
</tr>
<tr>
<td>Melding vergunning</td>
<td>Artikel 8.4 lid 1 Wet milieubeheer</td>
<td>EZ</td>
<td>Afsluiting van de GBI Barendrecht van het bestaande putterterrein.</td>
</tr>
<tr>
<td>Overdracht deel</td>
<td>Artikel 19 en 20 Mijnbouwwet</td>
<td>EZ</td>
<td>Alvorens opslag plaats kan hebben in een reservoir dat nog deel uitmaakt van een bestaande winningsvergunning dient dit reservoir te worden overgedragen</td>
</tr>
<tr>
<td>Opslagvergunning</td>
<td>Artikel 25 Mijnbouwwet</td>
<td>EZ</td>
<td>Vergunning om stoffen op te slaan. De aanvraag zal beoordeeld worden op het voornemen, de kundigheid van de uitvoerder en o.m. de relatie met het planmatig beheer van delfstoffen en aardwarmte.</td>
</tr>
<tr>
<td>Opslagplan</td>
<td>Artikel 39 Mijnbouwwet en artikel 26 Mijnbouwbesluit</td>
<td>EZ</td>
<td>Een beschrijving van de stoffen, de reservoir-kenmerken, risico’s en beheersmaatregelen tijdens de injectie en na beëindiging.</td>
</tr>
<tr>
<td>Meetplan bodembeweging</td>
<td>Artikel 41 Mijnbouwwet en artikel 30 Mijnbouwbesluit</td>
<td>EZ</td>
<td>Meetplan om eventuele bodembeweging voor, gedurende en na afloop van de opslag vast te stellen.</td>
</tr>
<tr>
<td>Bouwvergunning</td>
<td>Artikel 40 Woningwet</td>
<td>gemeente</td>
<td>Verlaatna voor het oprichten van een</td>
</tr>
</tbody>
</table>
Tabel 10.2 Overzicht van te nemen besluiten

<table>
<thead>
<tr>
<th>Besluit</th>
<th>Wettelijk kader</th>
<th>Bevoegd gezag</th>
<th>Globale inhoud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opslag</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruimtelijke onderbouwing</td>
<td>Afdeling 3.3 Wet ruimtelijke</td>
<td>Gemeente</td>
<td></td>
</tr>
<tr>
<td>bestemmingsplan</td>
<td>ordening</td>
<td></td>
<td>aantal bouwwerken (o.m. het compressorgebouw) ten behoeve van de opslag.</td>
</tr>
<tr>
<td>Emissievergunning</td>
<td>Hoofdstuk 16 Wet milieubeheer</td>
<td>NEA (Nederlandse Emissie Autoriteit)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>en Nederlands toewijzingsplan</td>
<td></td>
<td>Vergunning en opt-in voor de CO₂--</td>
</tr>
<tr>
<td></td>
<td>broeikasgasemissierechten</td>
<td></td>
<td>opslag, handelingen met rijksom de emissierechten en basis voor o.m.</td>
</tr>
<tr>
<td></td>
<td>2008-2012.</td>
<td></td>
<td>monitoringsplan.</td>
</tr>
<tr>
<td>Transport</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diverse (spoor) weegkruisingen</td>
<td>Wet beheer rijkswaterstaatwerken</td>
<td>Rijkswaterstaat,</td>
<td>Instemming en eventuele</td>
</tr>
<tr>
<td></td>
<td>Wegenverkeerswet en Spoorwegwet</td>
<td>gemeente, Prorail,</td>
<td>randvoorwaarden voor het kruisen van</td>
</tr>
<tr>
<td></td>
<td>Algemeen Plaatselijke Verordeningen (APV)</td>
<td>Waterschap Hollandse Delta, provincie</td>
<td>wegen.</td>
</tr>
<tr>
<td>Onttrekking grondwater</td>
<td>Grondwaterwet</td>
<td>Provincie</td>
<td>Instemming voor het ontrekken van grondwater voor de aanleg.</td>
</tr>
<tr>
<td>Lozing bemalingswater</td>
<td>Wet Verontreiniging Oppervlaktewater</td>
<td>Waterschap Hollandse Delta</td>
<td>Instemming voor het lozen (ontheffing/keur)</td>
</tr>
<tr>
<td>Aanlegvergunning</td>
<td>Artikel 14 Wet ruimtelijke</td>
<td>Gemeente, Waterschap</td>
<td>Voor werken die conform de algemene verordening / keur een aanlegvergunning vereist is.</td>
</tr>
<tr>
<td></td>
<td>ordening (APV), keur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruimtelijke onderbouwing</td>
<td>-</td>
<td>Gemeenten</td>
<td>Opnemen van CO₂-leiding in bestemmingsplannen</td>
</tr>
<tr>
<td>bestemmingsplan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zakelijk recht</td>
<td>-</td>
<td>Particulieren</td>
<td>Notariële akte en schadevergoeding</td>
</tr>
<tr>
<td>Toestemming tot aanleg buisleiding in buisleidingenstraat</td>
<td>Artikel 39 Mijnbouwbesluit</td>
<td>Stichting Buisleidingenstraat</td>
<td>Private overeenstemming tot gebruik van de leidingstraat.</td>
</tr>
<tr>
<td>Sluiting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sluitingsplan⁹</td>
<td>Artikel 39 Mijnbouwbesluit</td>
<td>EZ</td>
<td>Beschrijving van het sluitingsproces en de wijze waarop de locatie en het reservoir wordt achtergelaten.</td>
</tr>
<tr>
<td>Evaluatieplan</td>
<td></td>
<td></td>
<td>Beschrijving wijze van evaluatie</td>
</tr>
</tbody>
</table>

⁹ Het Sluitingsplan en de besluitvorming daarmee eindigt vindt plaats binnen een jaar nadat de opslag beëindigd is, maar is nu reeds relevant voor het MER en ook reeds een onderdeel van de besluitvorming rond het Opslagplan (artikel 26 lid 1 onder f Mijnbouwbesluit).
In het voorgaande overzicht zijn niet de algemene regels voor bijvoorbeeld het onderhouden, aanpassen of verlaten van een boorgat (Besluit algemene regels milieu mijnbouw) en de daarvoor in te dienen werkprogramma’s opgenomen. Dit geldt ook voor de uitbreiding en aanpassingen die op Plot 16 gedaan moeten worden. Deze vallen onder het Activiteitenbesluit en zijn om die reden niet opgenomen in bovenstaande tabel. Tevens zijn niet de zakelijke rechten en andere particuliere instemmingen opgenomen en de “werkvergunningen” voor de aanleg van de transportleiding”.

10.4 Relatie met bestaand instrumentarium

Het project kan worden afgewogen en vergund met de bestaande vergunning- en instemmingsinstrumenten. De kerninstrumenten waarmee reeds ervaring is opgedaan of waarbij reeds rekening is gehouden met de opslag van stoffen zijn respectievelijk de Wm-vergunning en het Opslagplan. Gelet op de gewenste basisinformatie en een vergelijk met de Europese ontwikkelingen naar een unieke opslagvergunning, bevat het Opslagplan de kernelementen van dit project.

Veiligheidsrapportage

In de richtlijnen voor het MER is aangegeven dat aandacht moet worden besteed aan externe veiligheid. Mijnbouwwerken als BRT en BRTZ zijn uitgezonderd van het Besluit externe veiligheid inrichtingen (Bevi) en Besluit risico’s zware ongevallen (Brzo), maar kennen externe veiligheid als een onderdeel van de Veiligheids- en Gezondheidsdocumenten (VG-documenten) op basis van de Arbeidsomstandighedenwetgeving (onder meer artikel 3.9 en Bijlage VI van het Arbeidsomstandighedenwetgeving). Deze VG-documentatie begint met de indiening van het Voorontwerprapport ten tijde van de aanvraag van een vergunning op basis van de Wet milieubeheer en kent, naast de zogeheten risicocontour en eventueel groepsrisico, een vergelijkbare inhoud wat betreft interne veiligheid, externe veiligheid en rampenbestrijding als een Veiligheidsrapport op basis van het Brzo.
11. Leemten in kennis en monitoring

11.1 Inleiding

In dit MER worden de te verwachten milieueffecten beschreven. Het betreft effecten die op basis van de huidige kennis en ervaring in alle redelijkheid verwacht mogen worden. Sommige effecten kunnen met een grotere zekerheid worden voorspeld dan andere effecten. Zo kan de hoeveelheid te graven grond redelijk nauwkeurig worden berekend, maar de hoeveelheid bemalingswater kan worden beïnvloed doordat de aanleg in een natte of droge periode plaatsvindt. Dit hoofdstuk gaat in op de onzekerheden in de voorspelde milieueffecten.

Niet alle onzekerheden hebben een significante invloed op de milieueffecten. Dit hoofdstuk is er op gericht om de relevante onzekerheden te benoemen. Op basis van deze onzekerheden wordt aangegeven in hoeverre de aannames invloed hebben op de uitkomst van de milieuafwegingen.

De onzekerheden kunnen worden veroorzaakt door leemten in informatie, kennis of ervaring. In het MER wordt dit veelal kortweg aangeduid als leemte in kennis. Daar waar leemte in kennis is geconstateerd, zal met behulp van monitoring moeten worden vastgesteld of en in hoeverre de effecten in de praktijk afwijken van datgene waar in het MER van is uitgegaan. Indien dit het geval is, zal duidelijk moeten worden omschreven welke maatregelen kunnen worden genomen om de negatieve effecten te beperken of teniet te doen.

In de onderstaande paragrafen wordt eerst ingegaan op de leemten in kennis (paragraaf 11.2). Daarbij wordt aangegeven wat een betreffende leemte voor gevolg heeft voor de uitvoering van het project. Vervolgens wordt het monitoringsprogramma beschreven (paragraaf 11.3). Naast de toetsing van mogelijke leemten in kennis worden operationele parameters gemeten. Evaluatiemomenten worden specifiek benoemd in paragraaf 11.4. Tot slot wordt in paragraaf 11.5 aangegeven hoe het reactieplan wordt vastgesteld.

11.2 Leemten in informatie en kennis

Bij het opstellen van een MER is altijd sprake van onzekerheden door leemten in kennis, informatie of ervaring. Dit kan gevolgen hebben voor de besluitvorming. Er kan onderscheid worden gemaakt tussen leemten in informatie en leemten in kennis. Een leemte in kennis ontstaat wanneer weinig bekend is over de relatie tussen een bepaalde ingreep en het daardoor veroorzaakte effect, of wanneer de methode om een goede voorspelling van de ingreep te maken (gedeeltelijk) ontbreekt. Van een leemte in informatie wordt gesproken wanneer er niet voldoende basisgegevens beschikbaar zijn om betrouwbare voorspellingen te kunnen doen.
11.2.1. Modellering mogelijke CO₂-migratie

In de olie- en gasindustrie zijn goede modellen beschikbaar waarmee inzichtelijk kan worden gemaakt hoe de olie of het gas in het reservoir beweegt, zodra winning plaatsvindt. Daarnaast kan injectie van stoom, water of gas in een reservoir worden gemodelleerd. Deze modellen maken gebruik van de gedetailleerde kennis van de reservoirs en de direct daarboven aanwezige laag. In de loop van de jaren zijn de modellen steeds verder verfijnd, doordat de berekende waarden kunnen worden vergeleken met de gemeten waarden.

De injectie van CO₂ in leeggeproduceerde gasreservoirs kan eveneens worden gemodelleerd. Dit is naar verwachting goed en betrouwbaar, gezien de ervaringen met gasopslag bij onder meer Norg en Grijpskerk.

Er is nog geen modelleerervaring met mogelijke migratie-effecten van CO₂. Onder meer door TNO zijn bij CO₂-opslag projecten al modelleringen uitgevoerd, maar deze hebben nog een schematisch karakter. Hieruit blijkt dat het mogelijk is modellen op te zetten, maar dat hier nog teveel onzekerheden in voorkomen. Dit wordt veroorzaakt door het volgende:

- De migratie op zeer lange termijn is nog niet eerder gemeten, met als gevolg dat er geen toetsbare meetgegevens zijn om de betrouwbaarheid van de berekeningen te toetsen.
- De migratie door bovenliggende lagen vraagt een grote detailkennis van deze lagen. De nadruk bij het seismisch onderzoek heeft veelal gelegen op het reservoir en de direct daar boven gelegen laag. Voor de ondiepere lagen is voldoende informatie beschikbaar om vast te stellen dat deze weerstand bieden aan migratie van CO₂, maar voor een detailmodellering is een meer precieze ligging van deze lagen nodig.

11.2.2. Kansen en gevolgen

Het ligt in de verwachting dat op termijn ook voor de diepe ondergrondse activiteiten een QRA (Quantitative Risk Assessment) kan worden uitgevoerd, zoals voor activiteiten nabij het maaiveld. Het risico wordt bepaald door de kans dat een gebeurtenis optreedt en door de gevolgen. Zodra modellen beschikbaar zijn, kunnen deze worden ingezet om de kans op een gebeurtenis te berekenen. Voor het benoemen van de bijbehorende gevolgen ontbreekt nog ervaring. Zodra meerdere projecten actief zijn, komen meetgegevens beschikbaar en in het verlengde daarvan de kwantificering van mogelijke gevolgen.

Door het ontbreken van ervaringscijfers wordt in dit MER uitgegaan van een meer kwalitatieve benadering.

11.2.3. Zeer lange termijn effecten

Het is de bedoeling het CO₂ permanent op te slaan. Dit betekent dat voor de zeer lange termijn het gedrag van het CO₂ in het reservoir, of buiten het reservoir, in beeld moet worden gebracht. Voor dergelijke zeer lange termijn processen zijn nog weinig meetgegevens, aangezien wetenschappelijke metingen slecht enkele tientallen jaren plaatsvinden.
Met behulp van extrapolatie wordt bepaald welke effecten mogelijk op nog langere termijn kunnen ontstaan. In het MER is gebruik gemaakt van extrapolatie en op basis hiervan zijn de mogelijke effecten bepaald.

11.2.4. Gedrag CO$_2$ bij snelle drukafname

In de calamiteitenscenario’s worden situaties beschreven waarin CO$_2$ vrijkomt uit de pijpleiding, bij de compressoren of bij de injectieput. Het CO$_2$ bevindt zich onder hoge druk, als gas of als vloeistof. Bij het vrijkomen van CO$_2$ uit het systeem, komt het CO$_2$ plotseling in een omgeving met veel lagere, atmosferische druk. Deze snelle afname van druk leidt tot een grote temperatuurdaling, waardoor het CO$_2$ als het ware bevriest. Daarnaast kan ook het aanwezige water in de lucht bevriezen, waardoor een stoomwolk kan ontstaan. Dit blijkt uit ervaringen in het buitenland.

11.2.5. Best Beschikbare Regelgeving (BBR)

In analogie met Best Beschikbare Technieken (BBT) zal voor het project gebruik worden gemaakt van de Best Beschikbare Regelgeving (BBR); er is middels de mijnbouwwetgeving en milieuwetgeving een scala aan instrumenten voorhanden. Deze zijn – kosten en baten in aanmerking nemend – economisch en technisch haalbaar en kunnen een hoog niveau van bescherming bieden (vgl. BBT in artikel 1.1 Wm). Voor een deel van deze besluiten geldt tevens, dat er ten tijde van de realisatie van het project nog geen absolute duidelijkheid bestaat over verantwoordelijkheden en bevoegdheden (bijvoorbeeld als gevolg van de in ontwikkeling zijnde Wet algemene bepalingen omgevingsrecht (Wabo) en de Rijkscoördinatieregeling). Feit is wel dat meerdere bevoegde instanties op verschillende niveaus gecoördineerd bij het vergunningenproces betrokken moeten worden.

11.3 Monitoringsplan

De verschillende bodemlagen, vanaf het reservoir tot aan maaiveld, zijn door TNO bijeengebracht in een ondergrondmodel. De monitoringinformatie zal worden gebruikt om dit verder bij te stellen en te verfijnen, zodat op termijn meer gekwantificeerde uitspraken met behulp van het model kunnen worden gedaan.

11.3.1. Aanlegfase

In de aanlegfase ligt de nadruk van monitoring op de graafwerkzaamheden voor de aanleg van de nieuwe pijpleiding. Hier moet rekening worden gehouden met mogelijke archeologische vondsten en bodemverontreinigingen. Daarnaast zal de hoeveelheid te bemalen water moeten worden bijgehouden, inclusief de kwaliteit van het verpompte water. Bij de graafwerkzaamheden dient rekening te worden gehouden met het feit dat de verschillende grondsoorten niet vermengd worden. Deze dienen gescheiden onttroggen te worden.
11.3.2. Operationele fase

In de operationele fase vindt standaardmeting plaats van een aantal parameters, zoals:

- Druk van het CO\(_2\) in het reservoir. De toename van de druk wordt gemeten en vergeleken met de verwachtingen. Dit is gerelateerd aan de injectiviteit, oftewel het gemak waarmee het CO\(_2\) in het reservoir stroomt. Daarnaast is de druk in het reservoir van belang om vast te stellen dat de druk niet boven de initiële druk uitkomt.

- Injectieflux. De hoeveelheid CO\(_2\) per tijdseenheid. Dit is van belang om de hoeveelheid geïnjecteerd CO\(_2\) vast te stellen. Hiermee kan worden bepaald hoeveel CO\(_2\) het reservoir daadwerkelijk kan bevatten. De hoeveelheid kan worden vergeleken met de verwachting op basis van berekeningen, om vast te stellen in hoeverre deze berekeningen correct zijn. Daarnaast dient de hoeveelheid gemeten te worden om in het kader van de emissiehandel de hoeveelheid CO\(_2\)-emissiereductie op te geven.

- Doorbraak CO\(_2\) in monitoringput (CO\(_2\) komt vanaf de injectieput bij de monitoringput aan). Voor beide reservoirs geldt dat injectie plaatsvindt via een injectieput en dat daarnaast nog een monitoringput aanwezig is in het reservoir. In deze monitoringput wordt gemeten hoe lang het duurt voordat het gas vermengd raakt met CO\(_2\). Dat geeft informatie over hoe het CO\(_2\) zich verspreidt door het reservoir en eventueel mengt met het aanwezige resterende gas.

![Diagram](image-url)
11.3.3. Na afloop van de injectiefase

Na afloop van de injectiefase wordt het volgende gemeten:

- Stromingmeting langs de putten. Er komen stromingmeters langs de putten om te bepalen of na afsluiting langs de wand van de put een gasstroming ontstaat.
- Monitoring putintegriteit.

In deelrapport 3 van het MER wordt nader ingegaan op de monitoring. Met name het opslagplan werkt dit technisch uit. Doordat verschillende organisaties met verschillende verwachtingen van vergunningverlening meetgegevens zullen vragen, zal worden onderzocht in hoeverre het mogelijk is te komen tot een integraal protocol voor monitoring en rapportage, waarin de verschillende instanties hun eigen specifieke informatie kunnen vinden (zie figuur 11.1).

11.4 Evaluatie

De resultaten van de monitoring worden gebruikt om bij te houden of de operationele activiteiten volgens plan verlopen. Indien er toch problemen optreden, zal een reactie moeten worden ondernomen volgens het noodplan (zie paragraaf 11.5). Daarnaast worden de bevindingen periodiek samengebracht in evaluatierapporten. Deze worden opgesteld om inzicht te krijgen in de verschillende processen.

Het eerste formele evaluatiemoment vindt plaats bij de afronding van de injectiefase voor de locatie Barendrecht, na circa 3 jaar. De evaluatie geeft een overzicht van de bevindingen en herijkt de verwachtingen voor het vervolg van het project, de injectie van CO\textsubscript{2} bij de locatie Barendrecht-Ziedewij.

11.5 Monitoring en (nood) reactieplan

Het monitoringprotocol voor dit CO\textsubscript{2}-opslagproject zal afzonderlijk worden opgesteld en ingediend bij de bevoegde instanties. Het doel van het monitoringsplan is om de verschillende monitoringswensen te combineren tot een samenhangend geheel. Hiermee kunnen de meetinspanningen efficiënter worden uitgevoerd, maar een gecombineerde rapportage heeft als voordeel dat steeds een compleet beeld kan worden gegeven.

Het monitoringsplan geeft een overzicht van de te meten parameters, maar daarnaast ook de mogelijke acties die volgen uit de metingen (reactieplan). Voor de verschillende parameters wordt zodoende aandacht besteed aan:

- Kritische waarden van waarnemingen met betrekking tot risico management plan.
- Geschikte reacties wanneer waarnemingen de kritische waarden benaderen.
- Reactie bij noodgevallen.
11.6 Leer effectenplan

Belangrijk is dat veel van de leer effecten al op zeer korte termijn gerealiseerd kunnen worden door de korte levenscyclus (3 jaar) van het Barendrecht veld.

Opslagtechniek
Verbeteren van de kennis op de volgende punten:

- Fasegedrag CO\(_2\) in injectieput en reservoir over de levenscyclus.
- CO\(_2\)-verspreiding in het reservoir (aanscherpen reservoir modellen).
- Mate van staalcorrosie en cementdegradatie in operationele fase.
- Effectiviteit putafsluittechnieken.
- Injectiviteit putten (over tijd) en daarmee verbonden de mate van chemische reacties in het reservoir.
- Mate van omkeerbaarheid van bodemdaling.
- Indirect (door monitoren van mogelijke lekpaden): integriteit van het opslagreservoir voor CO\(_2\)-opslag.

Transport
Alhoewel een 40 bar CO\(_2\)-pijpleiding nieuw is voor Nederland is het transport verder een routineactiviteit wat betreft de techniek. Er worden dan ook geen belangrijke leer effecten voorzien anders dan publieke acceptatie voor hogere druk CO\(_2\)-transport. Beleidsmatig kan het demonstratie project wel bijdragen in de discussie over:

- de mogelijke toevoeging van de stof CO\(_2\) onder de toekomstige AMvB-buisleidingen (subcategorie: overige stoffen)
- het toekomstige externe veiligheidsbeleid met betrekking tot CO\(_2\)-transport door buisleidingen

Maatschappelijke acceptatie
De mogelijkheid bestaat en wordt onderzocht om met zekere regelmaat metingen te doen naar de publieke acceptatie voor dit project bij de belangrijkste belanghebbenden (zie verder Hoofdstuk 5).

Juridisch (ruimtelijk)
Ook vanuit bestuurlijk-juridisch oogpunt zal het Barendrecht-project talloze leer momenten kennen. Vele bestaande en relatief jonge juridische instrumenten zullen een eerste toepassing krijgen gedurende dit project, terwijl de kaders hieromtrent nog steeds in beweging zijn. Daarenboven kent het besluitvormingstraject en het uitvoeren van de activiteit een relatief korte cyclus, met snel opeenvolgende consultatie- en beslismomenten die tevens de nodige juridische flexibiliteit en creativiteit vergen. Een doorkijk naar de opschaling in de toekomst is voor het geheel een belangrijke randvoorwaarde.
Dit alles vindt plaats binnen een ‘juridisch landschap’ met schuivende panelen wat betreft de regionale en centrale bevoegdheden rond CO\textsubscript{2}-opslag en wijzigende (proces)regels in de vorm van bijvoorbeeld de Wet algemene bepalingen omgevingsrecht (Wabo) en nationale coördinatieresegelingen. Het landelijk beleid, bijvoorbeeld via het Landelijk Afvalbeheerplan (LAP) en het in ontwikkeling zijnde Europees regelgevingkader, zijn bijzonder gevaarlijk bij de leerpunten uit het project, maar kunnen tegelijkertijd een wending te weeg brengen in de nu voorziene besluitvorming.

Juridisch lange termijn aansprakelijkheid

Voorafgaand aan de realisatie van het project zullen afspraken gemaakt worden met de overheid over de aansprakelijkheid op lange termijn.

Monitoring

Alhoewel de meeste van de voorgestelde monitoringstechnieken al bewezen zijn in de praktijk, zal de toepassing voor CO\textsubscript{2}-opslag in een aantal gevallen toch een nieuwe dimensie toevoegen. De leereffecten zitten daardoor vooral in bewijzen van bestaande technieken voor een nieuw toepassingsgebied. In overleg met partijen die bezig zijn de monitoringstechnieken verder te ontwikkelen wordt ook de toepassing van nieuwe technieken overwogen. Uiteindelijk zal een balans gevonden moeten worden tussen de mogelijke voordelen van het toepassen van nieuwe technieken (kosten, nauwkeurigheid, unieke mogelijkheden) en de mogelijke nadelen (kosten, risico op problemen en misleidende resultaten).
Literatuur: referentierapporten
1. AMESCO – engels/ Nederlands
2. Commissie voor de MER – advies AMESCO
3. Richtlijnen MER CO2 opslag Barendrecht

Literatuur: overig
NEN 3650-1: 2003, par. 8.1.6, Eisen voor transportleidingsystemen.

Literatuur: bijlage rapporten
Bijlage 1 - Bemalingsrapport
- Bemalingsrapport voor de aanleg van de 14” CO2-transportleiding Shell Pernis - Barendrecht, Oranjewoud, 11191-180534, revisie 00, 24 juni 2008

Bijlage 2 - Natuurtoets
- Natuurtoets CO2-leiding Shell NAM voor de aanleg van de 14” CO2-transportleiding Shell Pernis – Barendrecht, Oranjewoud, 11191-180534, revisie 00, 24 juni 2008.

Bijlage 3 – Cultuurtechnisch rapport en bodemonderzoeken
a. Cultuurtechnisch rapport (verkort) voor de aanleg van de 14” CO2-transportleiding Shell Pernis – Barendrecht, Oranjewoud, 11191-180534, revisie 00, 24 juni 2008
c. Bodemonderzoek Koelwaterstation, Tebodin B.V. maart 2005
d. Verkennend bodemonderzoek NAM-locatie Barendrecht (BRT1), Oranjewoud, 14207-184563, revisie 00, 13 juni 2008
e. Verkennend bodemonderzoek NAM-locatie Barendrecht-Ziedewij 1 (BRTZ1), Oranjewoud, 14207-184564, revisie 00, 13 juni 2008.

Bijlage 4 - Archeologie
c. Archeologisch onderzoek Buisleidingenstraat te Rhoon, inventariserend onderzoek d.m.v. proefsleuven, Grontmij Archeologische rapporten 396, 2006.

Bijlage 5 - Geluid

Bijlage 6 – Externe Veiligheid

b. Afstanden buisleidingen Buisleidingenstraat, anno 2008, Adviesbureau Schrijvers
Afkortingen en begrippen

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMESCO</td>
<td>Algemene Milieu Effecten Studie CO₂ Opslag</td>
</tr>
<tr>
<td>AMvB</td>
<td>Algemene Maatregel van Bestuur</td>
</tr>
<tr>
<td>BBR</td>
<td>Best Beschikbare Regelgeving</td>
</tr>
<tr>
<td>BBT</td>
<td>Best Beschikbare Techniek</td>
</tr>
<tr>
<td>Bevi</td>
<td>Besluit externe veiligheid inrichtingen</td>
</tr>
<tr>
<td>BRT</td>
<td>(locatie of veld) Barendrecht</td>
</tr>
<tr>
<td>BRTZ</td>
<td>(locatie of veld) Barendrecht-Ziedewij</td>
</tr>
<tr>
<td>BRT-x</td>
<td>put op locatie Barendrecht, nummer x</td>
</tr>
<tr>
<td>BRTZ-y</td>
<td>put op locatie Barendrecht-Ziedewij, nummer y</td>
</tr>
<tr>
<td>Brzo</td>
<td>Besluit risico’s zware ongevallen</td>
</tr>
<tr>
<td>CATO</td>
<td>CO₂ Afvang, Transport en Opslag</td>
</tr>
<tr>
<td>CCS</td>
<td>Carbon dioxide Capture and Storage</td>
</tr>
<tr>
<td>CDM</td>
<td>Clean Development Mechanism</td>
</tr>
<tr>
<td>DCMR</td>
<td>Dienst Centraal Milieubeheer Rijnmond</td>
</tr>
<tr>
<td>ECO</td>
<td>Exposure Concentration Obligation = stedelijke achtergrondconcentratie</td>
</tr>
<tr>
<td>EOR</td>
<td>Enhanced Oil Recovery</td>
</tr>
<tr>
<td>ETS</td>
<td>Emission Trading System</td>
</tr>
<tr>
<td>EU</td>
<td>Europese Unie</td>
</tr>
<tr>
<td>EZ</td>
<td>Minister(ie) van Economische Zaken</td>
</tr>
<tr>
<td>GBI</td>
<td>Gas Behandelings Installatie</td>
</tr>
<tr>
<td>GR</td>
<td>Groepsrisico</td>
</tr>
<tr>
<td>JI</td>
<td>Joint Implementation</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>IPPC</td>
<td>Integrated Pollution Prevention and Control</td>
</tr>
<tr>
<td>KISS</td>
<td>Keep It Smart and Simple, mobiele installatie met regelinstrumentatie</td>
</tr>
<tr>
<td>KWO</td>
<td>Koude Warmte Opslag (ook als WKO)</td>
</tr>
<tr>
<td>LAP</td>
<td>Landelijk Afvalbeheer Plan</td>
</tr>
<tr>
<td>m.e.r.</td>
<td>milieu effect rapportage</td>
</tr>
<tr>
<td>mer-commissie</td>
<td>Commissie voor de milieu effect rapportage</td>
</tr>
<tr>
<td>MER</td>
<td>Milieu Effect Rapport</td>
</tr>
<tr>
<td>MMA</td>
<td>Meest Milieuvriendelijk Alternatief</td>
</tr>
<tr>
<td>NAM</td>
<td>Nederlandse Aardolie Maatschappij B.V.</td>
</tr>
<tr>
<td>NEa</td>
<td>Nederlandse Emissieautoriteit</td>
</tr>
<tr>
<td>OCAP</td>
<td>Organic Carbon dioxide for Assimilation of Plants (OCAP v.o.f.), alsmede andere aan OCAP gelieerde ondernemingen, waaronder OCAP CO₂ Transport B.V.</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>PGS3</td>
<td>Publicatiereeks Gevaarlijke Stoffen 3</td>
</tr>
<tr>
<td>PR</td>
<td>Plaatsgebonden risico</td>
</tr>
<tr>
<td>QRA</td>
<td>Quantitative Risk Assessment</td>
</tr>
<tr>
<td>RCI</td>
<td>Rotterdam Climate Initiative</td>
</tr>
<tr>
<td>RGSP2</td>
<td>tweede Regionaal Groenblauw Structuurplan</td>
</tr>
<tr>
<td>RR2020</td>
<td>Ruimtelijk Plan Regio Rotterdam</td>
</tr>
<tr>
<td>SBN</td>
<td>Stichting Buisleidingenstraat Nederland</td>
</tr>
<tr>
<td>SCS</td>
<td>Shell CO₂ Storage B.V.</td>
</tr>
<tr>
<td>SGHP</td>
<td>Shell Gasification Hydrogen Plant</td>
</tr>
<tr>
<td>SIEP</td>
<td>Shell International Exploration & Production</td>
</tr>
<tr>
<td>SNR</td>
<td>Shell Nederland Raffinaderij</td>
</tr>
<tr>
<td>SodM</td>
<td>Staatstoezicht op de Mijnen</td>
</tr>
<tr>
<td>TNO</td>
<td>Nederlandse Organisatie voor toegepast natuurwetenschappelijk onderzoek</td>
</tr>
<tr>
<td>VG-document</td>
<td>Veiligheids- en Gezondheidsdocument</td>
</tr>
<tr>
<td>VN</td>
<td>Verenigde Naties</td>
</tr>
<tr>
<td>VROM</td>
<td>ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer</td>
</tr>
<tr>
<td>Wabo</td>
<td>Wet algemene bepalingen omgevingsrecht</td>
</tr>
<tr>
<td>WKO</td>
<td>Warmte Koude Opslag (ook als KWO)</td>
</tr>
<tr>
<td>Wm</td>
<td>Wet milieubeheer</td>
</tr>
<tr>
<td>WVO</td>
<td>Wet Verontreiniging Oppervlaktewater</td>
</tr>
</tbody>
</table>